

Solid Phase Extraction ENVIRO-CLEAN[®] Environmental Applications Manual

www.unitedchem.com

Table of Contents

traction Hints	6

ENVIRO-CLEAN[®] ENVIRONMENTAL APPLICATIONS

Drinking Water Analyses

EPA Method 506 – Phthalate and Adipate Esters in Drinking Water	8-10
EPA Method 508.1 - Rev 2.0 Chlorinated Pesticides, Herbicides, and Organohalides	11-12
EPA Method 509 - Determination of Ethylene Thiourea (ETU) in Water Using Gas Chromatography with	
a Nitrogen-Phoshorus Detector	13-16
EPA Method 515.2 – Determination of Chlorinated Acids in Water Using Liquid-Solid Extraction and	
Gas Chromatography with an Electron Capture Detector	17-22
EPA Method 521 - The Determination of Nitrosamines in Drinking Water	23-29
EPA Method 522 - Determination of 1,4-dioxane in drinking water by Solid-Phase Extraction (SPE) and	
Gas Chromatography/Mass Spectrometry (GC/MS) with Selected Ion Monitoring (SIM)	30-35
EPA Method 523: Determination of Triazine Pesticides and their Degradates in Drinking Water by	
Gas Chromatography/Mass Spectrometry (GC/MS)	36-37
EPA Method 525.2 - Extraction of Organic Compounds in Drinking Water	38-41
EPA Method 528 - Determination of Phenols in Drinking Water by Solid-Phase Extraction (SPE) and	
Capillary Column Gas Chromatography (GC/MS).	42-43
EPA Method 529 - Determination of Explosives And Related Compounds in Drinking Water by Solid-Phase Extraction and	
Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS)	44-45
EPA Method 532 - Determination of Phenylurea Compounds in Drinking Water by Solid-Phase Extraction and High Performance	
Liquid Chromatography with UV Detection	46-54
EPA Method 535 - Measurement of Chloroacetanilide and Other Acetamide Herbicide Degradates in Drinking Water by SPE	55-57
EPA Method 537 – Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid-Phase Extraction and	
Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)	58-63
EPA Method 548.1 - Endothall	64-67
EPA Method 549.2 - Diquat and Paraquat	68-72
EPA Method 550.1 - Determination of Polycyclic Aromatic Hydrocarbons in Drinking Water by Liquid-Solid Extraction and	
HPLC with Coupled Ultraviolet and Fluorescence Detection	73-74
EPA Method 552 - Determination of Haloacetic Acids and Dalapon in Drinking Water by SPE and GC/ECD	75-81
EPA Method 553 - Determination of Benzidines and Nitrogen-Containing Pesticides in Water Liquid-Solid Extraction and	
Reverse Phase High Performance Liquid Chromatography/Particle Beam/Mass Spectrometry	

Water Analyses

Bisphenol A Analysis in Water by GC/MS	84-86
Bisphenol A Analysis in Water by LC/MS/MS	87-89
Determination of Diesel Range Organics Using GC/FID by Method 8015D	90-94
Polycyclic Aromatic Hydrocarbons from a Water Matrix	95-96
Organochlorine Pesticides and Polychlorinated Biphenyls by Solid-Phase Extraction	97-102
EPA Method 1664 - Oil and Grease - Hexane Extractable Material (HEM)	103-104
EPA Method 8323 - SPE and Determination of Organotin by Micro-Liquid Chromatography Electrospray Ion Trap MS	105-107
EPA Method 8330 - Analysis of Nitroaromatics, Nitramines and Nitrate Ester Compounds-Explosive and	
Explosive Residue Compounds	108-112
EPA Method 608 ATP	113-119
Extraction of Metals	120
Ion Exchange Sorbents for Metals Extraction Analysis & Sorbent Use Selection Guide	121-124

Agricultural

Pesticides in Fatty Matrices Extraction Procedure	126-128
Analysis of Tobacco Alkaloids	129-130
Sample Preparation of Glyphosate (N-phosphonomethyl glycine) and	
Glufosinate (RS)-2-amino-4-(hydroxyl-methyl-phosphoryl) butanoic acid by Solid-Phase Anion Exchange Extraction	131-132
Extraction of Phenoxyacetic Acid Herbicides from Soil by GC-MS or LC/MS/MS	133-135
Analysis of Brodificoum, Diphacinone, and Hydramethylnon Pesticides in Soil Using C18 SPE	136
Extraction of Bentazone and Acifluorfen from Solid Matrices Using C18 SPE with GC/MS Analysis	137
QuEChERS Extraction and Clean-Up of Pesticides from Olive Oil	
QuEChERS Multiresidue Pesticide Method for the Determination of Multiple Pesticides in Wines	139-145
Determination of Pesticides in Red Wine by QuEChERS Extraction, Quick QuEChERS Cleanup, and LC/MS/MS Detection	146-152
Flukicides / Anthelmintics by QuEChERS	153-154
Streamlined Method for the Determination of More Than 100 Veterinary Drugs in Animal Tissue Using Dispersive-SPE Clean-up	and
LC-MS/MS Detection	155-160
Acrylamide by QuEChERS Extraction with LC/MS/MS Detection	161-162
Trichothecene Type A & B Analysis in Wheat and Corn Using the QuEChERS Approach	163-164
Multiresidue Analysis in Cereal Grains Using Modified QuEChERS Method with UPLC-MS	165-170
Extraction of Pesticides from Tomato Using the QuEChERS Approach	171
Pesticide and PAH Extraction of Grass and Other Leafy Vegetation by QuEChERS Using ChloroFiltr® Clean-Up	172
Extraction of Polycyclic Aromatic Hydrocarbons from Fish Using the QuEChERS Approach	173-174
Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Seafood Using GC/MS	175-180
QuEChERS Analysis of Miticides and other Agrochemicals in Honey Bees, Wax or Pollen	181-183
QuEChERS Pesticide Analysis for Fresh Produce by GC/MS/MS	184-188
Analysis of Cyromazine in Poultry Feed Using a QuEChERS Approach	189-190
Determination of Anthelmintic Drug Residues in Milk Using Ultra High Performance Liquid Chromatography	191-194
EURL-FV Multiresidue Method Using QuEChERS	195-200
Extraction of Pyrethrin and Pyrethroid Pesticides from Fish Using the QuEChERS Approach	201-202
QuEChERS-Based LC/MS/MS Method for Multiresidue Pesticide Analysis in Fruits and Vegetables	203-212
Modified QuEChERS Procedure for the Analysis of Bisphenol A in Canned Food Products	213-225
QuEChERS Sample Preparation for The Analysis of Pesticide Residue in Olives	226-230
Determination of Carbendazim in Orange Juice Using QuEChERS with LC/MS/MS Detection	231-234
Determination of Pesticides in Strawberries by QuEChERS Extraction, Quick QuEChERS Clean-up, and GC/MS Detection	235-237

Clean-Up and Fractionation

Clean-Up of Organochlorine Pesticides and PCB Extracts Using Florisil [®]	239
Fractionation of Aliphatic and Aromatic Hydrocarbons Using ENVIRO-CLEAN® EPH Silica	240-241
Removal of Sulfur from Environmental Samples Using Copper Beads	242

Extraction Hints

www.unitedchem.com

Extraction Hints

- Verify sample application pH. Analytes that are not in their proper form (i.e., neutral or charged), will not effectively bind to the sorbent and may result in low or erratic recoveries. The pH of deionized water cannot be correctly ascertained using pH paper. Use of a calibrated pH probe is necessary.
- Always pre-rinse the cartridge with the strongest solution the cartridge will see to ensure the cleanest extraction of your eluate.
- Do not allow the sorbent to completely dry out between conditioning steps or before sample application. To ensure properly solvated cartridges, apply each solvent immediately after the previous solvent. Improperly conditioned cartridges may lead to erratic recoveries.
- Prior to elution, <u>fully dried cartridges will ensure optimal analyte recovery</u>. To confirm cartridge dryness, touch the sides of the cartridge at the sorbent level at full vacuum. Cartridges should feel ambient temperature, not cool. If the cartridge feels cool, water is probably present. Dry the cartridge further unless otherwise specified in the application note.
- Elution rates and soak times specified in the applications are critical for acceptable and consistant recoveries. Hint: When in doubt, slower is always better.
- Always use fresh ammonium hydroxide (NH₄OH). NH₄OH rapidly loses its strength when exposed to air. Weak NH₄OH may lead to erratic recoveries.
- Some analytes are slightly volatile. Closely monitor eluate concentration to prevent loss of analyte. Hint: Higher water bath temperatures and lower nitrogen flow rates usually provide optimal results.

Drinking Water Analyses

www.unitedchem.com

Determination of Phthalate and Adipate Esters in Drinking Water by Liquid-Solid Extraction and Gas Chromatography with Photoionization Detection

UCT Part Numbers:

ENVIRO-CLEAN[®] Universal C18 Cartridge ECUNIC18 (1100 mg C18, 83 mL cartridge) or EEC181M6G (1000 mg C18, 6 mL glass cartridge) 6 mL Drying Cartridge ECSS156 (5 g, Na₂SO₄, 6 mL cartridge) FLORISIL PR[®] Clean-up Cartridge EUFLS12M15 (2000 mg,15 mL cartridge) Alumina Clean-up Cartridge EUALN1M6 (1000 mg, 6 mL cartridge) ENVIRO-CLEAN[®] Zero-Blank[™] filter cartridge (optional)

EPA Method 506 Revison 1.1* March 08, 2012

Procedure

1) Cartridge Activation

- a) Place ECUNIC18 cartridge(s) on the manifold
- b) Add a 10 mL aliquot of methylene chloride
- c) Slowly draw solvent completely through the cartridge
- d) Repeat with a second 10 mL aliquot of methylene chloride
- e) Hold for 1 minute the draw through
- f) Dry cartridge by drawing air at full vacuum for 2-3 minutes

Optional: To reduce background contamination from laboratory air, use of the **ENVIRO-CLEAN[®] Zero-Blank**[™] filter cartridge is highly recommended during drying steps 1) f) and 2) c)

- g) Add 10 mL of methanol to the cartridge
- h) Draw through leaving a thin layer on the frit

Note: Do not allow the cartridge to go dry otherwise repeat step i)

- i) Add a second 10 mL portion of methanol
- ii) Wait 1-2 minutes to activate sorbent then draw through to level of frit
- j) Add 10 mL reagent water to the cartridge and draw through until meniscus reaches the top of the frit
- k) Cartridge is now ready for sample extraction

2) Sample Extraction

- a) Add the 1 liter water sample to the cartridge and draw through over a period of about 20–30 minutes (fast drip)
- b) Rinse sample bottle and cartridge with a small volume of reagent water then add to cartridge
- C) Dry cartridge under full vacuum for 10 minutes (Optional: Use Zero-Blank[™] filter cartridge to prevent airborne contamination)

3) Cartridge Elution

- a) Place a collection vial in the vacuum manifold
- b) Add 5 mL of methylene chloride to the sample bottle and swirl
- c) Using a disposable glass pipette transfer the methylene chloride to the cartridge.
- d) Collect dropwise
- e) Repeat this procedure with another 5 mL of methylene chloride

4) Eluate Drying and Concentration

- a) Pour eluant over a 3 gram bed of anhydrous sodium sulfate or use
 Drying Cartridge ECSS156
- b) Rinse vial and sodium sulfate with a 3 mL aliquot of methylene chloride
- c) Repeat rinse using an additional 3 mL aliquot of methylene chloride
- d) Evaporate with a gentle stream of N_2 to 1 mL
- e) If sample is clean proceed to GC analysis
- f) If extract requires cleanup for phthalates esters proceed to Florisil or Alumina cleanup stages

Extract Clean-up---Florisil or Alumina

Clean-up procedures are not required for clean drinking water. Under certain circumstances for dirty water, a Florisil or Alumina cleanup may be needed.

Florisil Column Cleanup for Phthalate Esters

- 1. Add a 1 cm layer of anhydrous sodium sulfate to the top frit of Florisil cartridge **EUFLS12M15**
- 2. Flush cartridge with 20 mL of hexane leaving enough to cover the frit
- 3. Add sample extract to the cartridge then rinse vial with 2 mL of hexane
- 4. Add 20 mL of hexane to the cartridge and elute. Discard the hexane solution
- 5. Elute using 20 mL of 20% diethyl ether in hexane into a 500 mL K-D flask* equipped with a 10 mL concentrator tube. Elute at a rate of about 2 mL/minute
- 6. No solvent exchange is required
- 7. Concentrate eluate in hot water bath at 85° C to 1 mL
- 8. Sample is ready for GC analysis

Alumina Column Cleanup (neutral) for Phthalate Esters

- 1. Add a 1 cm layer of anhydrous sodium sulfate to the top frit of a Alumina cartridge **EUALN1M6**
- 2. Flush cartridge with 10 mL of hexane leaving enough to cover sodium sulfate
- 3. Add sample extract to the cartridge. Rinse vial with 2 mL of hexane and add to the cartridge
- 4. Add 15 mL of hexane to the cartridge and elute. Discard hexane solution
- 5. Elute at a rate of about 2 mL/minute using 15 mL of 20% diethyl ether in hexane (v/v)
- 6. Collect eluate in a 500 mL K-D flask equipped with a 10 mL concentrator tube
- 7. No solvent exchange is required
- 8. Concentrate eluate in hot water bath at 85° C to 1 mL
- 9. Sample is ready for GC analysis

*The analyst should refer to EPA Method 506 "Determination of Phthalate and Adipate Esters in Drinking Water by Liquid-Solid Extraction and Gas Chromatography with Photoionization Detection", Revision 1.1 Issued 1995, F.K. Kawahara and J.W. Hodgeson, Ed. By D. J. Munch US EPA, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio 45268

**K-D Flask = Kuderna-Danish Flask

DCN-218030-231

Determination of Chlorinated Pesticides, Herbicides, and Organohalides by Liquid-Solid Extraction and Electron Capture Gas Chromatography*

UCT Products: ECUNIC18 (1100mg C18, 83 mL cartridge) ECSS15M6 (5000 mg Na2SO4, 6 mL cartridge) EPA Method 508.1 Rev 2.0 August 25, 2009

Procedure

1) Condition Cartridge

a) Wash the cartridge with 5mL of ethyl acetate (EtAc) and 5 ml of methylene chloride (MeCl₂). Let the cartridge drain dry after each wash

b) Add 10 mL of methanol (MeOH) to the cartridge then draw through to top of frit

c) Rinse the cartridge with 10 mL of reagent water and draw through to top of frit

Note: Do not let the cartridge go dry after addition of methanol otherwise repeat at step b)

2) Sample Extraction

- a) Samples must be dechlorinated and pH adjusted to <2
- b) Add 5 mL of methanol to the 1 liter sample and mix well
- c) Add 50 μL of surrogate compound to the water sample and mix well
- d) Draw the water sample through the cartridge at a fast drip
- e) Dry the cartridge by drawing air or N2 through for about 10 minutes

3) Extract Elution

- a) Insert an eluate collection tube in the vacuum manifold
- b) Rinse the inside walls of the sample bottle using 10 mL EtAc then transfer solvent to the cartridge
- c) Collect dropwise
- d) Rinse the inside walls of the sample bottle using 10 mL of MeCl2 then transfer
- to the cartridge
- e) Collect dropwise combining eluents

4) Sample Drying

- a) Pour the combined eluents through a drying tube ECSS15M6
- b) Rinse the drying tube with 2 x 3 mL portions of MeCl₂

c) Concentrate the extract to about 0.8 mL under a gentle stream of N₂ while in a water bath

d) Rinse the inside walls of the concentrator tube three times with EtAc during the

evaporation

- e) Add internal standard (IS)
- f) Adjust the final volume of the extract to exactly 1.0 mL
- g) Sample is ready for GC analysis

For complete details on Method 508.1, rev 2.0 "Determination of Chlorinated Pesticides, Herbicides, and Organohalides by Liquid-Solid Extraction and Electron Capture Gas Chromatograph", the analyst is referred to: J. W. Eichelberger rev 1.0, 1994 and J. Munch, rev 2.0, 1995, Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268

DCN-905280-171

Determination of Ethylene Thiourea (ETU) in Water Using Gas Chromatography with a Nitrogen-Phoshorus Detector

UCT Product CLEAN-ELUTE™ 25,000 mg diatomatious earth, 200 mL cartridge EPA Method 509 October 1, 2009

Background

Method 509 is a gas chromatographic method for the determination of ethylene thiourea (CAS 96-45-7) a metabolic byproduct of the ethylene bisdithiocarbonate (EBDC) fungicides in water. Toxicological studies indicate that ETU may produce goitrogenic, tumorigenic, and teratogenic effects in laboratory animals, raising the concern that residues may be found in agricultural commodities. The method uses a packed column of diatomaceous earth to capture the analyte before elution with methylene chloride. Confirmation is made using a nitrogen-phosphorous detector or a mass spectrometer.

Method Summary

A 50 mL water sample is adjusted to ionic strength and pH by the addition of ammonium chloride (NH₄CI) and potassium fluoride (KF). The sample is poured into a UCT CLEAN-ELUTE[™] column and the ETU is eluted from the column using 400 mL of methylene chloride. An excess of a free radical scavenger is added to the eluate. The methylene chloride eluant is concentrated to 5 mL after exchange into ethyl acetate. GC analysis with a nitrogen-phosphorous detector or mass spectrometer is used for quantitation.

Safety

• ETU is a suspected carcinogen. Prepare all standards in a fume hood

Sample Collection and Preservation

- Grab samples must be collected in 60 mL glass containers fitted with Teflon-lined crew caps
- Do not pre-rinse with sample before collection
- After collection shake the sample bottle for 1 minute
- ETU may degrade in water even during refrigeration. Mercuric chloride has been used as a preservative but due to its toxicity and harm to the environment is not recommended
- Store sample on ice or in refrigerator at 4°C and protected from light. Extract as soon as possible after collection

Interferences

Method interferences arise from contaminated glassware, solvents, reagents and other laboratory apparatus in which the sample may come in contact. All reagents and glassware must be shown to be free from interferences under analysis conditions.

- Glassware must be scrupulously clean
- Clean glassware by rinsing with the last solvent used followed by hot water and detergent. Rinse with reagent water, dry and heat in an oven at 400°C for one hour. Do not heat volumetric flasks
- Always use high purity reagents and solvents
- Interfering contamination may occur when a low concentration sample is analyzed after a high concentration sample. Complete rinsing of the syringe using ethyl acetate may be required

Analysis Procedure

1) Sample Extraction

- a) Pipette 50 mL of the water sample into a clean bottle
- b) Add 1.5 grams ammonium chloride (NH₄Cl)
- c) Add 25 grams potassium fluoride (KF)
- d) Seal bottle and shake until salts are completely dissolved

2) Sample Extraction

- a) Add 5 mL of 1000 g/mL of dithiothreitol (DTT, Cleland's Reagent) in ethyl acetate as a free radical scavenger to a 500 mL Kuderna-Danish K-D concentrator tube
- b) Support a CLEAN-ELUTE[™] 200 mL cartridge using a clamp over a (K-D) tube
- c) Add the entire contents of the bottle from step 1) d) above
- d) Do not use vacuum but allow the cartridge to stand for 15 minutes

3) Sample Collection

- a) Add 400 mL of methylene chloride in 50 mL aliquots to the CLEAN-ELUTE™ column
- b) Collect the eluant in the K-D apparatus

4) Extract Concentration

The following steps must be conducted in a fume hood

- a) Add two boiling chips to the K-D apparatus and attach a macro Snyder column
- b) Attach a condenser to the Snyder column to collect solvent
- c) Place the K-D apparatus in a 65-70°C water bath so that the K-D tube is partially submerged in the water
- d) Once liquid volume had been reduced to 5 mL remove from the water bath
- e) Continue to reduce the liquid volume to < 1 mL in an analytical evaporator at 35-40°C under a stream of nitrogen
- f) Dilute sample to 5 mL with ethyl acetate rinsing the walls of the K-D apparatus
- g) Add 50 μ L of internal standard and agitate
- h) Transfer to a GC vial
- i) Sample is ready for analysis

5) GC Analysis Conditions

Primary:

Column: 10 m long x 0.25 mm I.D. DB-Wax bonded fused

Carrier Gas: He @ 30 cm/sec linear velocity

Makeup Gas: He @ 30 mL/min flow

Detector Gases: Air @ 100 mL/min flow; H2 @ 3 mL/min flow

Injector Temperature: 220°C

Detector Temperature: 230°C

Oven Temperature: 220°C isothermal

Sample: 2 µL splitless; nine second split delay

Detector: Nitrogen-phosphorus

Confirmation Conditions:

Column: 5 m long x 0.25 mm I.D. DB-1701 bonded fused Carrier Gas: He @ 30 cm/sec linear velocity Makeup Gas: He @ 30 mL/min flow Detector Gases: Air @ 100 m:/min flow; H2 @ 3 mL/min flow Injector Temperature: 150°C Detector Temperature: 270°C Oven Temperature: 150°C isothermal Sample: 2 µL splitless; nine second split delay

Detector: Nitrogen-phosphorus

Analyte	Primary Column RT (min)	Confirmation Column RT
ETU	3.5	4.5
THP internal standard	5.1	5.0
PTU surrogate standard	2.7	2.2

*The analyst should refer to EPA Method 509 "Determination of Ehtylene Thiourea (ETU) in Water Using Gas Chromatography with a Nitrogen-Phoshorus Detector", Revision 1.0 Issued 1992, By DJ Munch and RL Graves, US EPA, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio 45268 and TM Engel and ST Champagne, Battelle, Columbus Division

DCN-901010-173

Determination of Chlorinated Acids in Water Using Liquid-Solid Extraction and Gas Chromatography with an Electron Capture Detector

UCT Products: ECDVB156 (500 mg, DVB, 6 mL cartridge) ECUNIDVB500 (500 mg, DVB, 83 mL cartridge)

EPA Method 515.2 Revision 1.1 January 13, 2011

Procedure

1) Hydrolysis and Separation of Interferences

Hydrolysis is required to convert esters to the parent acid prior to extraction

- a) Allow water samples from cold storage to come to room temperature
- b) Add 80 mg of sodium thiosulfate (or 50 mg sodium sulfite) if residual chlorine is present. Shake
- c) Perform the same steps for all LRB's, LFB's LFM's and QCS samples
- d) Measure 250 mL of each water sample with a graduate cylinder and pour into a 500 mL separatory funnel
- e) Add 250 μL of the surrogate PDS to each sample
- f) Dissolve 50 g sodium sulfate in each sample
- g) Add 4 mL of 6 N NaOH to each sample, seal, and shake
- h) If the sample pH is less than 12, adjust by adding more 6N NaOH
- i) Allow sample sit at room temperature for one hour, occasionally shaking the contents
- j) Use 15 mL methylene chloride to rinse the sample bottle and the graduated cylinder
- k) Add the methylene chloride to the separatory funnel. Extract the sample by vigorously shaking the funnel for 2 minutes
- I) Allow the organic layer to separate for 10 minutes
- m) Discard the methylene chloride phase
- n) Repeat the extraction procedure by addition of a second 15 mL volume of methylene chloride to the separatory funnel
- o) Discard the methylene chloride
- p) Perform a third extraction in the same manner as above discarding the methylene chloride
- q) Drain the aqueous contents of the separatory funnel into a 500 mL beaker
- r) Adjust the pH to 1.0 ±0.1 with constant stirring by the dropwise addition of concentrated sulfuric acid

2) Sample Extraction

- a) Place ECDVB156 or ECUNIDVB500 cartridge(s) on the manifold
- b) With vacuum off add 20 mL of 10% by volume of methanol in methyl-*t*-butyl ether (MTBE) to the top of each cartridge
- c) Allow the solvent to remain for two minutes
- d) Turn on full vacuum and draw the solvent through
- e) Dry in room air for five minutes under full vacuum
- f) Adjust the vacuum to \leq 5 in. Hg and add the following in series:
 - a. 20 mL methanol
 - b. 20 mL reagent water
 - c. sample

Note: Do not allow the cartridge to dry after steps f) a) or b) otherwise repeat

- g) After the sample has drawn through, apply full vacuum for 20 minutes to dry the cartridge(s)
- h) Place culture tubes in the manifold to collect eluates
- Add 2 mL aliquot of 10% methanol in MTBE and allow to sit for 1 minute before applying vacuum
- j) Add a second 2 mL aliquot of 10% methanol in MTBE and allow to sit for 1 minute before applying vacuum
- k) Rinse the beaker(s) with 4 mL of pure MTBE and add to the cartridge(s)
- I) Remove the culture tubes from the manifold and cover

3) Extract Preparation

- a) Prepare a acidified sodium sulfate drying tube(s)
- b) Rinse with 2 mL of MTBE
- c) Remove the entire extract with a 5 mL pipette

- d) Drain the lower aqueous layer back into the culture tube
- e) Add the organic layer to the drying tube
- f) Maintain liquid in the drying tube between this step and the following steps
- g) Collect the dried extract in a 15 mL graduated centrifuge tube or a 10 mL
 Kuderna-Danish tube
- h) Rinse the culture tube with an additional 1 mL of MTBE and repeat at step 3) c)
- Repeat step 3) e) and then add a 1 mL aliquot of MTBE to the drying tube before it empties.
 The final volume should be 6-9 mL
- j) The extract can now be esterified as in Step 4

4) Extract Esterification with Diazomethane

- a) Assemble a diazomethane generator in a hood as shown in diagram below
- b) Add 5 mL of ethyl ether to Tube 1
- c) Add 4 mL of Diazald* solution and 3 mL of 37% KOH solution to the reaction Tube 2. Each charge of the generator should be sufficient to esterify four samples

*Add 10 g Diazald (Sigma-Aldrich D28000 or other supplier) in 100 mL of a 50:50 by volume mixture of ethyl ether and Carbitol (2-(2-ethoxyethoxy) ethanol). Solution is stable for one month or longer when refrigerated in a Teflon-lined screw cap amber bottle

- d) Immediately place the exit tube into the collection tube containing the sample extract
- e) Turn on N₂ at 10 mL/min to bubble diazo-methane through the extract. The appearance of a persistent yellow color indicates that esterification is complete. The first sample should require 30 seconds to one minute and each subsequent sample somewhat longer. The final sample may require two to three minutes
- f) Cover each collection tube and store at room temperature in a hood for 30 minutes
 No significant fading of the yellow color should occur during this time
- g) Fortify each sample with 100 μ L of the internal PDS solution and reduce the volume to 5.0 mL with an analytical concentrator or equivalent concentration technique using a gentle stream of dry N₂
- h) Cover tubes and store in a refrigerator if further analysis will not be performed immediately

Note: The excess diazomethane is volatilized from the extract during the concentration procedure

i) Samples are ready to analyze by GC-ECD

Extract Esterification with Trimethylsilyldiazomethane (TMSD)

Alternative Procedure

Note: GC background is significantly increased when TMSD is used as the derivatizing reagent instead of diazomethane. While no method analyte is affected by this increased background, the recommended surrogate, 2, 4-dichloro-phenylacetic acid, is masked by an interfering peak. Any compound found suitable when TMSD is used is acceptable as a surrogate

- a) Conduct the hydrolysis, clean-up, and extraction of the method analytes as described up to steps 2) g) above
- b) Elute the herbicides from the cartridge by passing 2 x 2 mL aliquots of MTBE through the cartridge into the collection tube
- c) Rinse the sample container with 4 mL of MTBE and pass it through the cartridge into the tube
- d) Pre-wet an ECSS156 anhydrous sodium sulfate drying tube with 1 mL MTBE
- e) Transfer the MTBE extract from the collection tube discarding any water layer
- f) Before the extract passes completely through the drying tube, rinse with an additional 2 mL of MTBE
- g) Concentrate the dried extract to approximately 4 mL
- h) Add 1 mL of methanol to the extract to yield a 20% (v/v) methanol in MTBE solution
- i) Adjust the volume to 5 mL with MTBE. (TMSD produces the most efficient methylation of the herbicides in a 20% methanol, 80% MTBE solution)
- j) Add 50 μL of the 2M TMSD solution to each 5 mL sample extract
- k) Place the tube containing the extract into a heating block at 50°C
- I) Heat the extract for one hour then allow the extract to cool to room temperature,
- m) Add 100 μ L of 2M acetic acid in methanol to react with any excess TMSD
- n) Fortify the extract with 100 μ L of **ISS** to yield a concentration of 0.020 μ g/mL
- o) Sample(s) are ready for GC/ECD analysis

Stock Standard Solutions (SSS) 1.00-2.00 µg/µL

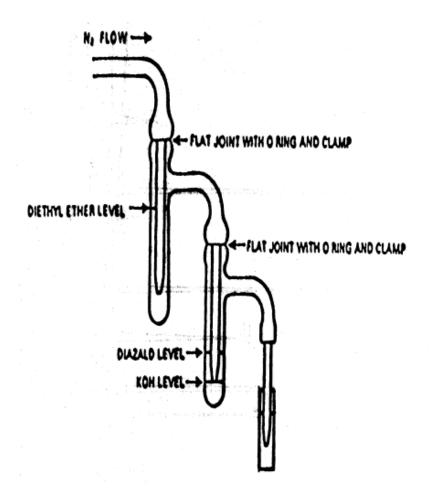
Stock standard solutions may be purchased as certified solutions or prepared in the lab

Prepare from pure standard materials using the following procedure:

- Accurately weighing approximately 0.0100-0.0200 g of pure material
- Dissolve the material in methanol and dilute to volume in a 10 mL volumetric flask
- If compound purity is certified at 96% or greater, the weight may be used without correction to calculate the concentration of the stock standard
- Transfer the stock standard solutions into 15 mL fluorocarbon-sealed screw cap amber vials.
 Store at 4°C or less
- Stock standard solutions should be replaced after two months or sooner

Primary Dilution Standards

- Prepare two sets of standards according to the sets labeled A and B in Table 1
- For each set, add approximately 25 mL of methanol to a 50 mL volumetric flask
- Add aliquots of each stock standard in the range of approximately 20-400 μL
- Dilute to volume with methanol
- Individual analyte concentrations will then be in the range of 0.4-8 µg/mL (for a 1.0 mg/mL stock). The minimum concentration would be appropriate for an analyte with strong ECD response, i.e., pentachlorophenol. The maximum concentration is for an analyte with weak response, i.e., 2, 4-DB


Internal Standard Solution (ISS)

- Prepare an ISS solution by accurately weighing approximately 0.050 g of pure 4,4'dibromooctafluorobiphenyl (DBOB). Dissolve the DBOB in methanol and dilute to volume in a 10 mL volumetric flask. Store at room temperature in a fluorocarbon sealed screw cap bottle
- Prepare a primary dilution standard (PDS) approximately 1.00 μg/mL by the addition of 20 μL of the stock standard to 100 mL of methanol. Addition of 100 μL of the PDS solution to the final 5 mL of sample extract results in a final internal standard concentration of 0.020 μg/mL

Note: DBOB has been shown to be an effective internal standard for the method analytes

Surrogate Analyte Solution

- Prepare a surrogate analyte stock standard solution by accurately weighing approximately 0.050 g of pure 2, 4-dichlorophenylacetic acid (DCAA). Dissolve in methanol and bring to volume in a 10 mL volumetric flask. Store in a fluorocarbon-sealed screw cap bottle at room temperature
- Prepare a primary dilution standard of approximately 2.0 μg/mL by addition of 40 μL at the stock standard to 100 mL of methanol
- Add 250 μL of the surrogate analyte solution to 250 mL sample prior to extraction to provide a surrogate concentration of 2 $\mu g/L$

Diazomethane Generator

Summarized from, Method 515.2, "Determination Of Chlorinated Acids In Water Using Liquid-Solid Extraction And Gas Chromatography With An Electron Capture Detector", Revision 1.1, 1995, National Exposure Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH

DCN-218030-201

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

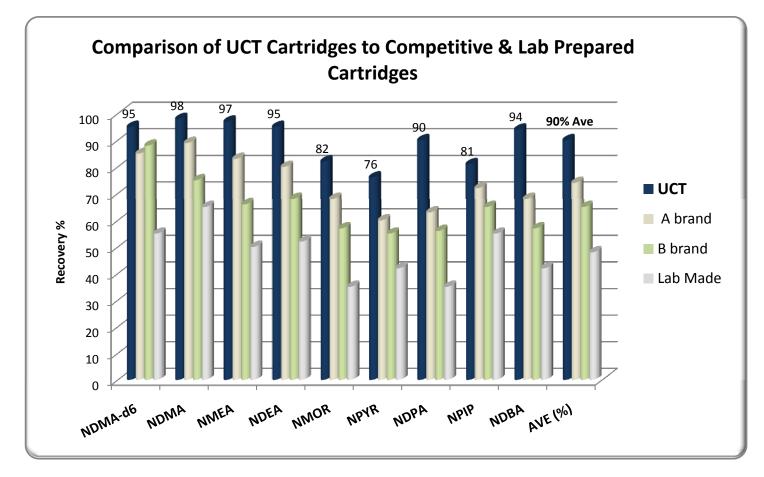
ENVIRO-CLEAN® Carbon Cartridges

Part Number: EU52112M6 EPA Method 521 August 25, 2009

The UCT activated carbon cartridge is designed to provide a high level of performance in solid-phase extraction for the analysis of **nitrosamines** in finished drinking water.

Product Benefits

- > Designed to meet US EPA specifications
- > Free from interferences that cause false positives
- Double ringed to prevent fines
- No Lot to Lot variability
- Excellent analytical reproducibility
- > Packaged in metalized, sealed pouches to maintain product cleanliness


Product Features

- > Each 6 mL cartridge contains 2000 mg of activated coconut carbon sorbent
- > Can be used on manual single or multi-station manifold systems
- > Cartridges may be used with automated extraction systems

Nitroaromatics, Nitramines and Nitrate Ester Analytes with CAS

Analyte	Abbreviation	CAS	% Recovery n=3
N-Nitrosodimethylamine	NDMA	62-75-9	95
N-Nitrosomethyldiethylamine	NMEA	10595-95-6	98
N-Nitrosodiethylamine	NDEA	55-18-5	95
N-Nitrosodi-n-propylamine	NDPA	621-64-7	90
N-Nitrosodi-n-butylamine	NDBA	924-16-3	94
N-Nitrosopyrollidine	NPYR	930-55-2	76
N-Nitrosopiperidine	NPIP	100-75-4	81

UCT Product Number: ENVIRO-CLEAN[®] EU52112M6

Data indicate the performance of **UCT** brand cartridges exceeds competitive brands **A** and **B**, and cartridges prepared in the laboratory

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

EPA Method 521* Summary

Determination of Nitrosamines in Drinking Water by Solid-Phase Extraction and Capillary Column Gas Chromatography with Large Volume Injection and Chemical Ionization Tandem Mass Spectrometry (MS/MS)

Scope and Application

Method 521 is a procedure using activated carbon for the determination of various nitrosamines in finished drinking water. The method can also be used for untreated source waters but has not been evaluated for these sources. Nitrosamines are sufficiently thermally stable and volatile for direct analysis by gas chromatography. Single laboratory LCMRL for the analytes in this method range from 1.2-2.1 ng/L.

Method Summary

Analytes and surrogates are readily extracted when a 500 mL water sample is drawn through a solidphase extraction cartridge containing 2 grams of coconut activated carbon. The organic compounds eluted from the solid-phase with a small quantity of methylene chloride. The solvent is concentrated and an internal standard added. The sample components are identified after injection on a fused silica capillary column of a GC/MS/MS equipped with a large volume injection injector.

Interferences

- Major contaminant sources are reagents and water
- Nitrosamines may be present in trace amount in rubber products such as gloves and water systems. NDMA can leach from rubber products. These products must be avoided in the reagent water system. Analysis of a laboratory blank can provide information about the source of contamination
- Water stored in glass bottles with PTFE caps is recommended
- Rubber coated septa on injection vial may also introduce method analytes into the sample extracts giving false high readings

Sample Collection

- Filed sampling equipment must be free of plastic or rubber tubing
- All field samples must be dechlorinated with 80-100 mg of sodium thiosulfate per liter at time of collection
- Samples must iced during shipment and not exceed 10 °C
- Sample stored in the lab must be held at 6°C
- Analyze with 14 days after collection
- Sample extracts can be stored up to 28 days in amber vials at -15°C or less and protected from light

Safety

The analytes in this method are classified as known human and mammalian carcinogens. Standard and stock solutions should be handled using suitable protection to skin and eyes.

Notes

- GC systems must be capable of temperature programming
- Deactivated post liners should be used
- Tandem mass spectrometers may be either triple quadrupole or ion trap

Procedure

(manual or automated)

1) Cartridge Conditioning

- a) Add 3 mL of methylene chloride to the cartridge, then turn on the vacuum and slowly draw completely through the cartridge
- b) Add 3mL of methanol to the cartridge, turn on vacuum and draw through
- c) Add 3 mL of methanol again and draw through so that the methanol just covers the top layer of carbon.

Do not let the cartridge go dry after this step otherwise repeat starting at step 1-b)

- d) Add 3 mL of reagent water to the cartridge and draw through
- e) Repeat water rinse, step d) 5 additional times

Proper conditioning of the cartridge is essential for good precision and accuracy

2) Sample Extraction

- a) Adjust the vacuum setting so that the flow rate is 10 mL/minute
- b) After sample extraction draw air through the cartridge for 10 minutes at full vacuum
- c) After drying, proceed immediately to cartridge elution step 3)

3) Cartridge Elution

- a) Insert a clean collection tube in the manifold
- b) Fill the cartridge with methylene chloride
- c) Partially draw the methylene chloride through at low vacuum then turn vacuum off and allow cartridge to soak for 1 minute
- d) Draw the remaining methylene chloride through in dropwise fashion
- e) Continue to add methylene chloride to the cartridge as it is being drawn through until a total of 12-13 mL have been added

Note: Small amounts of residual water from the sample container and SPE cartridge may form an immiscible layer with the extract. To eliminate the water a drying column packed with 5 grams of anhydrous sodium sulfate or use **UCT ECSS15M6** for drying. Wet the cartridge with a small volume of methylene chloride before adding extract. Rinse the drying column with 3 mL of methylene chloride.

f) Concentrate the methylene chloride to about 0.9 mL in a water bath near room temperature. Do not concentrate less than 0.5 mL as loss of analyte may occur

4) Sample Analysis

- a) Calibrate the MS in EI mode using FC-43
- b) Inject into a GC/MS/MS
- c) Identify the product ion spectrum to a reference spectrum in a user created data base

Analyte	Retention Time (min)	Precursor Ion (m/z)	Product/Quantitation Ion (m/z)
NDMA	8.43	75	43(56)
NMEA	11.76	89	61(61)
NDEA	14.80	103	75(75)
NPYR	22.34	101	55(55)
NDPA	22.40	131	89(89)
NPIP	24.25	115	69(69)
NDBA	30.09	159	57(103)
NDMA-d6 surrogate	8.34	81	46(59)
NMEA-d10 internal std	14.63	113	81(81)
NDPA-d6 internal std	22.07	145	97(97)

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved Retention times were obtained on a Varian Saturn 4 GC/MS/MS using the following conditions:

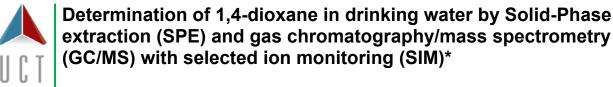
Temp (°C)	Rate (°C/min)	Time (min)
37	0	0.72
250	100	2.13
250	0	40

Injector Program

Injector Split Vent Program

Time (min)	Split Status
0	Open
0.70	Closed
2.00	Open

GC Oven Temperature Program


Temperature (°C)	Rate (°C/min)	Hold Time (min)
40	0	3.0
170	4.0	0
250	20.0	3.0

Analyte	DL (ng/L)	LCMRL (ng/L)
NDMA	0.28	1.6
NMEA	0.28	1.5
NDEA	0.26	2.1
NPYR	0.35	1.4
NDPA	0.32	1.2
NPIP	0.66	1.4
NDBA	0.36	1.4

Limits and Lowest Concentration Minimum Reporting Levels

*For complete details on Method 521, September 2004, the analyst is referred to: J.W.Munch & M.V.Bassett, "Determination of Nitrosamines in Drinking Water by Solid-Phase Extraction and Capillary Column Gas Chromatography with Large Volume Injection and Chemical Ionization Tandem Mass Spectrometry (MS/MS), National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268

DCN-905280-112

Part Number: Option 1 EU52112M6 (2 grams coconut carbon in a 6 mL cartridge) Option 2 EU521146 (400 mg coconut carbon 6 ml cartridge) EPA Method 522 September 08, 2010

1, 4-dioxane (CASRN 123-91-1) referred to as dioxane, is a highly water soluble non-biodegradable ether. This is a gas chromatography/mass spectrometry (GC/MS) method for the determination of this analyte in drinking water. Scan mode may be used if appropriate sensitivity is attained. Option 1 is designated for sample volumes of \leq 500 mL. Option 2 is designated for sample volumes of \leq 100 mL. Both products can be used with most automated systems.

Sample Collection & Preservation

- Prepare bottles before sample collection with sodium sulfite (CASRN 7757-83-7)
- Open the tap and allow the system to flush until the water temperature has stabilized (approximately three to five min)
- Fill sample bottles. Do not flush out the dechlorination reagent
- Cover the bottle and agitate by hand until the sodium sulfite has dissolved
- Add sodium bisulfate (CASRN 7681-38-1). Mix until dissolved

Sample Shipment and Storage

- Samples must be chilled during shipment and must not exceed 10° C during the first 48 hours after collection
- Sample temperature must be confirmed to be at or below 10° C when they are received at the laboratory
- Verification of sample dechlorination Upon the receipt of samples at the laboratory, verify that field samples were dechlorinated at the time of collection. The absence of total chlorine can be verified with a N, N-DIETHYL-P- PHENYLENEDIAMINE (DPD) CHLORINE TEST KIT
 - (Hach model CN-66; cat. # 2231-01 or equivalent)
- Holding time may be up to 28 days

Interferences:

- All glassware must be meticulously cleaned with detergent and tap water, rinse with tap water, followed by reagent water
- Non-volumetric glassware should be heated in a muffle furnace at 400° C for 2 hours
- Volumetric glassware should be solvent rinsed with DCM or purge and trap grade methanol after washing, and dried in a low temperature oven (<120 °C) or air dried
- Interferences may be caused by contaminants in solvents, reagents (including reagent water), sample bottles and caps, and other sample processing hardware. All items must be routinely demonstrated to be free from interferences (less than 1/3 the MRL for the method analyte) under the conditions of the analysis. Subtracting blank values from sample results is not permitted
- **Purge and trap grade methanol must be used** for all steps where methanol is required. Other grades of methanol may contain low molecular weight compounds which may prohibit accurate identification and quantitation of the analyte, SUR and IS
- Matrix interferences may be caused by contaminants that are co-extracted from the sample. The matrix interferences will vary considerably from source to source
- Analyte carry-over may occur when a relatively "clean" sample is analyzed immediately after a sample containing relatively high concentrations of compounds
- Syringes and splitless injection port liners must be cleaned carefully and replaced as needed. After analysis of a sample containing high concentrations of compounds, a LRB should be analyzed to ensure that accurate values are obtained for the next sample
- During automated GC/MS analyses, extracts with positive results that were analyzed immediately following a sample with high concentrations of the analyte, should be reanalyzed after analyzing an acceptable LRB. If the analyte is not detected in extracts analyzed immediately after a high concentration extract, no reanalysis is necessary
- Silicone compounds may be leached from punctured autosampler vial septa, particularly when particles of the septa sit in the vial. This can occur after repeated injections from the same autosampler vial. If this method is performed in full scan mode, silicone compounds may appear as regular chromatographic peaks with similar fragmentation patterns. They can unnecessarily complicate the total ion chromatogram
- High laboratory background levels of 1,4-dioxane have been reported to be associated with air contamination. Contact UCT technical support for possible solutions to air contamination issues

Safety:

- The toxicity or carcinogenicity of each reagent used in this method has not been precisely defined
- 1,4-Dioxane is classified as a class B2 or probable human carcinogen
- Sodium bisulfate is used as a sample preservative to inhibit microbial growth and decay of 1,4-dioxane

Option 1-- 500mL samples

- 1) Prepare Cartridge (vacuum manifold use)
 - a) Place a EU52112M6 cartridge on a single or multi-station vacuum manifold
 - b) Add 3 mL of dichloromethane (methylene chloride) to the cartridge and draw through
 - c) Add 3 mL of methanol and draw through completely
 - d) Add 3 mL of DI water and draw through. Do not let cartridge go dry
 - e) Repeat step d) 5 times without letting the cartridge go dry

2) Extract Sample

- a) Add surrogate 1,4-dioxane- d_8 to the 500 mL sample water
- b) Add sample water to the cartridge. Adjust vacuum for a 10 mL/minute flow rate
- c) After 500 mL of sample has drawn through, dry cartridge by drawing air at full vacuum for 10 minutes

3) Cartridge Elution

- a) Place a clean collection vial in the vacuum manifold
- b) Fill each cartridge with dichloromethane (DCM). Soak sorbent for 1 minute then slowly draw through dropwise
- c) Continue to add DCM the cartridge until the total volume is 9 mL
- d) Remove collection tube and adjust volume to 10 mLs with DCM
- e) Add IS. Adding 5 μl of 1000 μg/mL IS solution to 10 mL DCM extract will yield 500 ng/mL
- f) Mix by vortex
- g) Dry extract by adding 2 grams anhydrous sodium sulfate (Na₂SO₄)
- h) Mix well
- i) Transfer aliquot to autosampler vials for analysis

NOTE: This extract cannot be reliably concentrated by nitrogen evaporation because of the volatility of dioxane

- 1) **Prepare Cartridge** (for automated extraction systems)
 - a) Place a EU521146 cartridge in a manifold
 - b) Add 1 mL of dichloromethane (methylene chloride) to the cartridge and draw through
 - c) Add 2 mL of methanol and draw through
 - Add 2 mL of methanol and draw through to just above the top of the cartridge. Do not let cartridge go dry after this point
 - e) Add 3 mL of DI water to cartridge and draw through without allowing the cartridge to dry out.

2) Extract Sample

- a) Immediately start sample extraction. Adjust vacuum for a 10 mL/minute flow rate
- b) After sample extraction is complete, draw air for 10 minutes

3) Cartridge Elution

- a) Add 1 mL of dichloromethane to the cartridge
- b) Vent the system and allow the DCM to soak for 1 minute before turning on vacuum
- c) Apply low vacuum and slowly draw DCM through cartridge
- d) Add a second 1 mL aliquot of dichloromethane and draw through
- e) Remove collection tube and adjust final volume to 2 ml
- a) Add internal standard to extract (THF-d₈) Addition of 10 μL of a 100-μg/mL IS solution to a 2-mL extract will result in a concentration of 500 ng/mL
- b) Mix well by vortex mixer
- c) Pass the 2-mL extracts through a small column containing 0.4 g of dry anhydrous sodium sulfate. A fritted 3-mL polypropylene column or a 5-8 mm diameter disposable pipette with a small piece of glass wool may be used. Collect the extracts from the drying column directly in 2-mL autosampler vials for storage

NOTE: This extract cannot be reliably concentrated by nitrogen evaporation because of the volatility of dioxane

Instrument & Conditions

Column: Varian CP-Select 624 CB (6% cyanopropyl phenyl, 94& PDMS, 30 m 0.25mm x 1.4 um column (or equivalent)

Injector: 200°C (Splitless mode)

Injector Volume: 1 µL

Helium: Carrier gas 99.999% or better

Flow: 1 mL minute

Oven:

- 30° C for 1 minute 90°C at 8° C/minute
- 200° C at 20° C/minute for 4 minutes

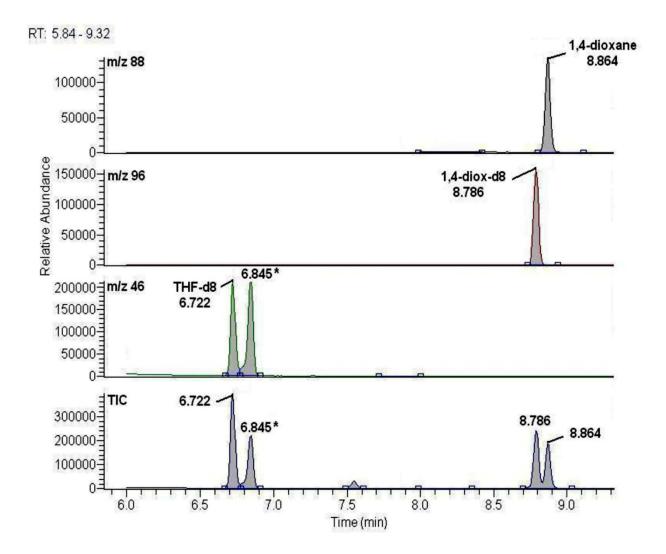
MS: Any type of mass spectrometer may be used (i.e., quadrupole, ion trap, time light, etc.), although the SIM option may not provide enhanced sensitivity, or be an available option on all instruments

SIM MODE

Segment 1: m/z 46**, 78, 80

Segment 2: m/z 58, 62, 64, 88**, 96**

Dwell time 100 µs


Emission current 100 µA

** quantitation ions

Retention Times and Quantitation Ions (QIs)

Compound	Retention Time (min)	SIM lons (<i>m/z</i>)
1,4 dioxane	8.85	58, 88
1,4 - dioxane – <i>d</i> ₈ (SUR)	8.77	62,64, 96
THF-d ₈ (IS)	6.68	46 ,78,80

Reconstructed total ion current chromatogram and mass chromatograms for THF-*d*8 (IS), 1,4-dioxane-*d*8 (SUR), and 1,4-dioxane at 0.5 μ g/mL each (the standard is equivalent to an extract of a 10 μ g/L aqueous sample). * Peak at 6.845 min is chloroform, a chemical present in DCM

 Summarized from Jean W. Munch and Paul E. Grimmett, "Method 522 Determination Of 1,4-Dioxane In Drinking Water By Solid-Phase Extraction (SPE) And Gas Chromatography/Mass Spectrometry (GC/MS) With Selected Ion Monitoring (SIM)", Office of Research and Development, National Exposure Laboratory, Cincinnati, OH Version 1.0, September 2008

DCN-018009-135

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

Method 523: Determination of Triazine Pesticides and their Degradates in Drinking Water by Gas Chromatography/Mass Spectrometry (GC/MS) Version 1.0

UCT Part Numbers: EC5232506 (250 mg GCB, 6 mL cartridge) August 2012

Method Summary

This is a gas chromatography/mass spectrometry (GC/MS) method for the determination of triazine pesticides and their degradation products in finished drinking waters. Samples are pH adjusted, dechlorinated with ammonium acetate and protected from microbial degradation with 2-chloroacetamide during collection. Analytes are extracted from a **250 mL sample** using 250 mg carbon cartridges

The following compounds can be determined using this method:

Analyte	CASRN
Atrazine	1912-24-9
Atrazine-desethyl	6190-65-4
Atrazine-desethyl-desisopropyl	3397-62-4
Atrazine-desisopropyl	1007-28-9
Cyanazine	21725-46-2
Propazine	139-40-2
Simazine	122-34-9
Terbuthylazine-desethyl	30125-63-4
Terbuthylazine	5915-41-3
Prometon	1610-18-0
Prometryn	7287-19-6
Ametryn	834-12-8

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

1) Sample Preparation

- a. Allow samples to reach room temperature prior to extraction
- b. Add an aliquot of the Surrogate Primary Dilution Standards (PDS) to each sample
- c. Fortify Laboratory Fortified Blanks, Laboratory Fortified Sample Matrices, or LFSM Duplicates, with an appropriate volume of analyte PDS and the atrazine-desethyldesisopropyl stock standard
- d. Cap and invert each sample several times to mix
- e. Proceed with sample extraction using SPE carbon cartridges

2) Cartridge Cleaning & Conditioning

- a. Set up extraction cartridges on the SPE vacuum manifold
- b. Using low vacuum (approximately 1 to 2 inches Hg), rinse each cartridge with two 6mL aliquots of DCM drawing completely through
- c. Rinse each cartridge with a 6-mL aliquot of MeOH
- d. Draw MeOH to the top of the cartridge frit

Note: Do not let the cartridge dry after addition of MeOH

- e. Add a 6-mL aliquot of reagent water (RW) to the cartridge
- f. Draw RW to the top of the cartridge frit

3) Sample Extraction

- a. Add an additional 4 mL of RW to each cartridge
- b. Attach sample transfer lines to the cartridges. The additional volume prevents the SPE cartridge bed from going dry while the dead volume in the transfer lines is being filled
- c. Extract 250 mL of sample at a cartridge flow rate of 10 mL/minute
- d. Dry the cartridges under high vacuum for 10 seconds
- e. Release vacuum, then add a 0.25-mL aliquot of MeOH to each cartridge
- f. Draw the MeOH to waste, then dry cartridge under full vacuum for 10 minutes

4) Sample Elution

- a. Place 15-mL conical tubes into the manifold for collection
- b. Add 2 mL of EtOAc to the cartridge and elute dropwise
- c. Add 2 x 6-mL aliquots of 9:1 DCM/MeOH to cartridge
- d. Allow the cartridge beds to briefly soak in solvent, then draw the solvent through the cartridges
- e. Dry the eluate by passing it through approximately 3 grams of anhydrous Na₂SO₄ collecting it in a 40-mL centrifuge tube. Pre-rinse the Na₂SO₄ with a 1-mL aliquot of 3:1 DCM/EtOAc
- f. Rinse with 1-mL aliquot of 3:1 DCM/EtOAc collecting it in the centrifuge tube
- g. The dried extracts may be stored overnight in the 40-mL tubes at -10 °C
- h. Warm the 40-mL tubes to 35 °C in a water bath under a stream of N_2 and evaporate solvent to less than 1 mL but no less than 0.5 mL
- i. Transfer the concentrated eluate to 1-mL volumetric tubes
- j. Rinse the conical tube with a small volume of EtOAc, and transfer the rinse to the volumetric
- k. Add IS solution and adjust to volume
- I. Transfer the extracts to autosampler vials for analysis or store in a freezer \leq -10 °C

Complete details at Office of Water (MLK 140) EPA Document No. 815-R-11-002 February 2011 http://www.epa.gov/safewater/

DCN-217280-240

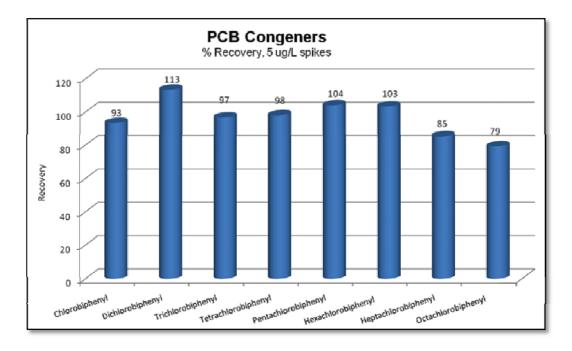
Organic Compounds in Drinking Water

Part Number: ECUNI525 METHOD 525.2 May 22, 2009

Method 525.2 Analytes

The analyte list for this method is comprised of over 120 compounds representative of several classes of pesticides, polynuclear aromatic hydrocarbons, PCBs, phthalates and adipates and other drinking water pollutants. Recovery ranges from 70-130%. Refer to the published method for compound specific MDL's.

The validation data presented herein were determined on independent lots of UCT ENVIRO-CLEAN[®] Universal Cartridges. MDLs were not determined on all analytes as part of this validation. In addition to the listed method analytes, recovery data for an extended list of analytes is also included.


Table of CompoundsTested using the UCT ENVIRO-CLEAN[®] Universal Cartridge 525

Analyte	Average 3 Replicates % Recovery	Std Dev
Acenaphthene	100	0.0
2,4-dinitrotoluene	83	NA
2,6-dinitrotoluene	78	NA
4,4"-DDE	91	4.2
4,4"-DDT	94	3.5
4,4'-DDD	94	4.5
Acenaphthylene	96.0	0.012
Acenaphthene	99.1	0.013
Acetochlor	115	0.01
Alachlor	99	0.007
Aldrin	77	4.4
Ametryn	95	4.6
Anthracene	80	0.0
Atraton	84	17.3
Atrazine	111	0.011
Benzo(a) anthracene	75.4	0.049
Benzo(a)pyrene	105	9.9
Benzo(b)fluoranthene	184.9	0.022
Benzo(k)fluoranthene	95.7	0.029
Benzo[g,h,i]perylene	83.1	0.05
BHC, alpha	108	6.9
BHC, beta	97	3.1
BHC,delta	109	7.9
BHC,gamma	102	11.9
bis- (2-ethylhexyl) adipate	95.1	0.033
bis 2 ethylhexyl phthalate	104	0.029
Bromacil	126	0.012
Butachlor	113	0.005
Butylate	103	4.6
Butylbenzylphthalate	97.1	0.02
Caffeine	90.0	0
Captan	86.9	0.273
Carboxin	103	12.9
Chlordane, alpha	97	4.6
Chlordane, gamma	94	2.5
Chlordane, trans nonachlor	115	11.0
Chlorneb	113	11.0
Chlorobenzilate	118	10.0
Chlorpropham	130	0
Chlorpyrifos (Dursban)	107	5.0
Chlorothalonil	117	12.1
Chrysene	100	0.012
Cyanazine (Bladex)	126	0.008
Cycloate	111	15.0

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

Analyte	Average 3 Replicates % Recovery	Std Dev	
Dacthal (DCPA) methyl ester	118	13.1	
Diazinon	135	0.031	
Dibenzo[a,h]anthracene	77.4	0.051	
Dichlorvos (DDVP)	127	9.5	
Dieldrin Diethylphthalata	96 99.1	6.8 0.071	
Diethylphthalate Dimethoate	106	0.008	
Dimethylphthlate	78.6	0.022	
Di-n-butylphthalate	113	0.12	
Diphenamid	119	0.008	
Disulfoton	92.1	0.01	
Disulfoton Sulfone	108 116	12.5	
Endosulfan I Endosulfan sulfate	116	11.1 6.8	
Endrin	88	0.0	
Endrin Aldehyde	97	3.6	
Endrin Ketone	90	3.8	
EPTC	102	0.005	
Ethion	112 109	0.005	
Ethoprophos Etridiazole (terrazole)	97	5.8 1.2	
Fenarimol	70	0.0	
Fluoranthene	100	0.018	
Fluorene	99.7	0.012	
Heptachlor	79	8.2	
Heptachlor Epoxide Iso A	116	16.3	
Hexachlorobenzene	94	17.4	
Hexachlorocyclopentadiene Hexazinone (Velpar)	82 105	8.4 8.1	
ndeno[1,2,3-cd]pyrene	77.4	0.16	
sophorone	91	NA	
Lindane	127	4.8	
methoxychlor	123	7.6	
Methyl Paraxon (Parathion)	115	5.0	
Metolachlor	111 109	0.004	
Metribuzin Mevinphos (phosdrin)	117	0.005 12.1	
MGK 264	121	5.8	
Molinate	114	0.013	
Naphthalene	90.3	0.013	
Napropamide (Devrinol)	115	2.3	
Nonachlor, trans	116	11.1	
Norflurazon [⊃] CNB (carbaryl)	133 91.4	6.1 0.021	
Pebulate	101	1.7	
Pentachlorophenol	80	0.017	
Permethrin, cis	124	2.1	
Permethrin, trans	123	3.1	
Perylene-d12	119	0.0	
Phenanthrene Phenanthrene-d10	96.9 99	0.014 6.6	
Prometon	78.6	0.008	
Prometryn	110	0.012	
Pronamide (propyzamide)	101	1.2	
Propachlor	113	15.0	
Propazine	105	4.6	
Pyrene	94.6	0.022	
Simazine	91.4	0.005	
Simetryn	93	4.6	
Stirofos (tetrachlorvinphos)	126	6.9	
Thiobencarb	112	0.008	
Febuthiuron	85	33.5	
Terbacil	120	3.5	
Ferbutryn	103	2.3	
Triademefon	98	6.9	
Tricyclazole	107	5.0	
Trifluralin	82	9.7	
Frifluran	83	9.2	
Trithion (carbofenothion)	101	0.004	
Terbufos	95	7.0	
/ernolate	107	1.2	
PCB Congeners	Average	Std Dev	
2-chlorobiphenyl	93	2.3	
2.3-Dichlorobiphenyl	113	15.0	
2,4,5-trichlorobiphenyl	97	3.1	
2,2,4,4-tetrachlorobiphenyl	98	5.3	
2,2,3,4,6-pentachlorobiphenyl	104	2.0	
2,2,4,4,5,6-hexachlorobiphenyl	103	3.1	
2,2,3,3,4,4,6-heptachlorobiphenyl	85	1.2	
Octachlorobiphenyl (BZ#200)	79	1.2	

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

EPA Method 525.2 Revision 2.0 Determination of Organic Compounds in Drinking Water by Liquid-Solid Extraction and Capillary Column Gas Chromatography/Mass Spectrometry

Method Summary

A one liter water sample is adjusted to pH <2 using 6N HCL before passing through an 83 mL ENVIRO-CLEAN[®] Universal 525 UCT cartridge (ECUNI525). Analytes are eluted from the cartridge with ethyl acetate and methylene chloride. The extract is reduced in volume to 1.0 mL and analyzed by GC/MS.

Method

1. Assemble an all glass filtration apparatus using an 83 mL UCT Universal 525 cartridge.

a) Use of a vacuum manifold for multiple extractions or automated extractions is acceptable

2. Wash the extraction apparatus and cartridge

- a) Add 10 mL of a 1: 1 mixture of ethyl acetate: methylene chloride (EtAc: MeCl₂) to the reservoir.
- b) Draw a small amount through the cartridge with vacuum
- c) Turn off the vacuum and allow the cartridge to soak for about one minute
- d) Draw the remaining solvent through the cartridge to waste
- e) Allow the cartridge to dry for 3 minutes under full vacuum

3. Condition the cartridge

- a) Add 10 mL of methanol
- b) Draw a small amount through the cartridge
- c) Let soak for about one minute
- d) Draw most of the remaining methanol through the cartridge, leaving 3 to 5 mm of methanol on the surface of the cartridge frit
- e) Immediately add 20 mL of reagent water to the cartridge and draw most of the water through leaving 3 to 5 mm on the top of the cartridge frit

Note: Do not let the cartridge dry out after the addition of water

- f) Add 5 ml of methanol to the water sample and mix well
- g) Add the water sample to the cartridge and under vacuum, filter at a rate of approximately 50 mL per minute
- h) Drain as much water from sample bottle as possible
- i) Dry the cartridge under vacuum for 10 minutes

Note: Exceeding a 10 minute dry time could result in low recoveries. For faster drying, remove the cartridge and tapping the excess moisture from the bottom of the cartridge before continuing vacuum drying

4. Remove cartridge assembly

- a) Insert a suitable sample tube for eluate collection
- b) Add 10 mL of EtAc to the sample bottle
- c) Rinse the sample bottle thoroughly
- d) Transfer the solvent to the cartridge with a disposable pipette, rinsing sides of filtration reservoir
- e) Draw half of solvent through cartridge then release the vacuum. Allow the remaining solvent to soak the cartridge for about one minute
- f) Draw remainder through under vacuum
- g) Repeat the solvent rinse of the sample bottle and apparatus using 10 mL of 1:1 EtAc:MeCl₂
- h) Using a disposable pipette, rinse down the sides of the cartridge and bottle holder with another 10 mL aliquot of 1: 1 EtAc:MeCl₂
- i) Add the rinse to the cartridge, then draw through

5. Dry the combined eluant

- a) Use granular anhydrous sodium sulfate
- b) Rinse the collection tube and sodium sulfate with two x 3 mL portions of MeCl₂ and place combined solvent in a concentrator tube
- c) Draw through using vacuum
- d) Concentrate the extract to 1 mL under gentle stream of nitrogen (may be warmed gently) being careful not to spatter the contents.

Note: Do not concentrate to <0.5 mL or loss of analytes could occur. Rapid extract concentration could result in loss of low molecular weight analytes

6. Analyze by GC/MS

Revison 2.0, 1995. Method authors: Eichelberger, J. W., Behymer, T. D. Budde, W L., Munch, J., National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268

This summary highlights major steps in the 525.2 method. Complete details about the preparation and composition of reagent solutions can be found in method and should be referenced by anyone needing complete details. It is available as a part of Supplement 11 from National Technical Information Service (NTIS), Springfield, VA 22161; publication PB 92 207703. (800) 553-6847 or at www.epa.gov/safewater/methods/methods.html

DCN-902250-113

Determination of Phenols in Drinking Water by Solid-Phase Extraction (SPE) and Capillary Column Gas Chromatography (GC/MS)

UCT Products:

ECDVB156 (500 mg DVB, 6 mL cartridge) or ECUNIDVB500 (500 mg DVB, 83 mL cartridge) ECSS15M6 (5 g Na₂SO₄ cartridge)

Method 528 Revision 1.0 February 24, 2009

Procedure

1) Condition Cartridge(s)

- a) Add 6N HCl solution dropwise to water sample to adjust pH to less than 2
- b) Rinse the cartridge(s) with 3 mL of methylene chloride then draw to waste
- c) Repeat methylene chloride rinse 2 more times
- d) Rinse the cartridge(s) with 3 mL of methanol then draw to waste
- e) Repeat methanol rinse 2 more times
- f) After the third rinse, leave enough methanol in the cartridge(s) to cover the frit

Do not let the cartridge(s) dry out at this point otherwise start over at step d)

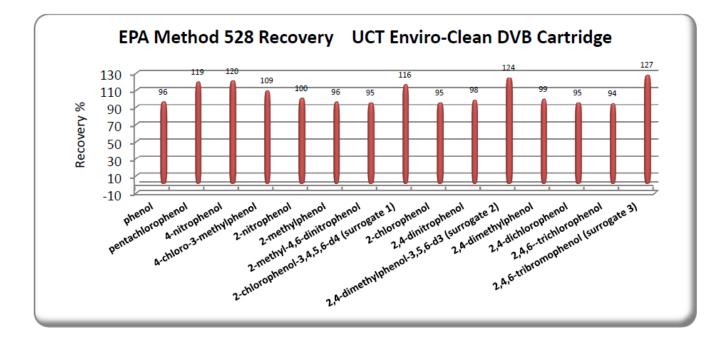
- g) Rinse the cartridge(s) 3 times with 3 mL of 0.05N HCl and draw to top of frit
- h) With vacuum off, add 3 mL of 0.05N HCl to the cartridge(s)

2) Sample Addition

- a) Begin adding the water sample to the cartridge(s)
- b) Adjust the vacuum so the flow rate is about 20 mL/minute (extraction will require about 50 minutes)
- c) After extraction allow cartridge(s) to dry under vacuum for 10-15 minutes before proceeding to the next step

A dry cartridge is important for good recoveries

3) Extract Elution


- a) Rinse the inside of the sample bottle a 10 mL portion of methylene chloride
- b) Add this to the cartridge(s) then draw this through to the collection tube in a dropwise fashion
- c) Add another 3 mL of methylene chloride to the cartridge(s) then slowly draw through to collection tube

4) Eluate Drying

- a) Dry the eluate by passing through a prerinsed anhydrous sodium sulfate column **ECSS15M6** and collect eluate in a clean tube
- b) Rinse the sodium sulfate column with a 2 x 3 mL aliquots of methylene chloride and collect in the tube
- c) Concentrate the extract to about 0.9 mL in a warm water bath (40 $^{\circ}$ C) under a gentle stream of N_2
- d) Adjust final volume to 1.0 mL with methylene chloride

5) Analysis

a) Analyze extract by GC/MS

For complete details on Method 528 the analyst is referred to: Method 528 Revision 1.0, Determination of Phenols in Drinking Water by Solid-Phase Extraction (SPE) and Capillary Column Gas Chromatography (GC/MS), J. W. Munch, April 2000, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268

DCN-903020-123

Determination of Explosives and Related Compounds in Drinking Water by Solid-Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS)

UCT Products: ENVIRO-CLEAN[®] ECDVB156 (500 mg DVB, 6 mL cartridge) or ECUNIDVB500 (500 mg DVB, 83 mL cartridge) ECSS15M6 (5 g Na₂SO₄, 6 mL cartridge)

EPA Method 529 March 08, 2012

Procedure

1) Cartridge Conditioning

- a. Mark the level of liquid on the sample bottle for accurate volume determination
- b) Verify that the sample pH is between 5 and 7 and free of chlorine
- c) Add an aliquot of the surrogate fortification solution for a final concentration of 1-5 μ g/L and mix (See Notes)
- d) Place cartridge(s) on vacuum manifold
- e) Rinse the cartridge with 3 x 5 mL aliquots of ethyl acetate
- f) Let the cartridge drain completely between each solvent addition
- g) Rinse the cartridge with 3 x 5 mL aliquots of methanol

Do not let the cartridge go dry after this step otherwise repeat starting at step h)

h) Rinse the cartridge with 2 x 10 mL aliquots of reagent water. Leave a visible layer of water covering the cartridge frit

Proper conditioning of the cartridge is essential for good precision and accuracy

2) Sample Extraction

- a) Add the water sample to the cartridge
- b) Adjust the vacuum setting so that the flow rate is 10-15 mL/minute and draw through all sample
- c) After extraction draw air through the cartridge for 10 minutes at full vacuum

3) Cartridge Elution

- a) Insert a clean collection tube in the manifold
- b) Rinse the inside of the sample bottle with 5 mL ethyl acetate and add to cartridge
- c) Add another 5 mL aliquot of ethyl acetate to the cartridge and draw through dropwise to the collection tube
- d) Pass the ethyl acetate eluate through a **ECSS15M6** drying tube or use a bed of anhydrous sodium sulfate
- e) Wash the drying tube using 4 mL of ethyl acetate
- f) Concentrate the eluate under a gentle stream of N_2 in a warm water bath to 0.9 $\,mL$
- g) Add internal standards and bring final volume to 1.0 mL for analysis
- h) Sample is ready for analysis

4) Sample Analysis by GC/MS

a) Inject 1-2 µL

Notes

Surrogate standards (nitrobenzene-*d*₅; 1, 3, 5-trimethyl-2-nitro-benzene; and 1, 2, 4-trimethyl-5-nitro-benzene) are added to all calibration standards, samples, LFBs, LFMs, FDs, and LRBs

Internal Standard Stock - Prepare a stock standard of the internal standard, 3, 4dinitrotoluene (CAS# 610-39-9), at approximately 2.0 mg/mL in ethyl acetate. Store at 0° C or less.

Surrogate Standard Stock Solutions - Prepare or purchase individual stock standards of the following surrogate analytes: 1, 3, 5-trimethyl-2-nitrobenzene commonly known as 2-nitromesitylene [CAS603-71-4], 1, 2, 4-trimethyl-5-nitrobenzene commonly known as 2-nitropseudocumene [CAS# 610-91-3], and nitrobenzene-*d*5 [CAS# 4165-60-0]. Standards of 2-nitromesitylene and 2-nitropseudocumene should be prepared in methanol at concentrations of 1-2 mg/mL. Nitrobenzene-*d*5 should be prepared in methylene chloride at a concentration of 1-2 mg/mL. Store at 0° C or less. During method development, these solutions were stable for at least 1 year.

*For complete details on Method 529, September 2002, the analyst is referred to: J.W.Munch, "Determination Of Explosives And Related Compounds In Drinking Water By Solid-Phase Extraction And Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS)", National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268

DCN-218030-190

Determination of Phenylurea Compounds In Drinking Water By Solid-Phase Extraction And High Performance Liquid Chromatography With UV Detection

Part Number: **EUC18156** (6 mL cartridge with 500 mg C18) **EPA Method 532** Revision 1.0 September 07, 2010

The Background

This is an HPLC method for the determination of phenylurea pesticides in drinking water. It is applicable to phenylurea compounds that are efficiently extracted from the water using a C18 Solid-Phase cartridge. Accuracy, precision, and method detection limit (MDL) data have been generated for the following compounds* in reagent water and finished ground and surface waters:

Analyte	CAS #
Diflubenzuron	35367-38-5
Diuron	330-54-1
Fluometuron	2164-17-2
Linuron	330-55-2
Propanil	709-98-8
Siduron	1982-49-6
Tebuthiuron	34014-18-1
Thidiazuron	51707-55-2

Phenylurea Compounds

Method Summary

A 500 mL water sample is extracted using an SPE cartridge containing a bonded C18 Solid-Phase. The phenylurea pesticides and surrogate compounds are captured by the solid-phase. The analytes and surrogates are eluted from the Solid-Phase with methanol, and the extract concentrated to a final volume of 1 mL. Analytes are then chromatographically separated by injecting an aliquot of the extract into an HPLC and detected using a UV/Vis detector. Identification of target and surrogate analytes and quantitation is accomplished by retention times and analyte responses using external standard procedures. Sample extracts with positive results are solvent exchanged and confirmed using a second, dissimilar HPLC column that is also calibrated using external standard procedures.

Safety

• Each chemical compound should be treated as a potential health hazard, and exposure to these chemicals should be minimized using proper handling technique

Sample Collection, Preservation and Storage

- Grab samples must be collected using 500 mL amber or clear glass bottles fitted with PTFE lined screw caps
- Prior to field shipment, sample bottles must contain, 0.25 g of cupric sulfate and 2.5 g of Trizma crystals to each bottle for each 500 mL of sample collected
- Alternately, the Tris buffer may be prepared by adding 2.35 g of Tris HCl and 0.15 g Tris to the sample bottle in addition to the 0.25 g of cupric sulfate
- When sampling from a cold water tap, remove the aerator so that no air bubbles will be trapped in the sample. Allow the system to flush until the water temperature has stabilized (usually about 3-5 minutes). Collect samples from the flowing system.
- When sampling from an open body of water, fill a 1 quart wide-mouth bottle or 1L beaker with sample. Carefully fill sample bottles from the container
- Sampling equipment, including automatic samplers, must be free of plastic tubing, gaskets, and other parts that may leach interfering analytes into the water sample
- Fill sample bottles, taking care not to over fill bottles so as not to flush out the sample preservation reagents. Samples do not need to be collected headspace free
- After collecting the sample, replace cover then agitate by hand for 1 minute. Keep samples sealed from collection time until extraction

Preservation Reagents

- Cupric Sulfate, CuSO₄ 5H₂O (ACS Grade or equivalent) Added as a biocide to guard against potential degradation of method analytes by microorganisms
- Trizma Preset Crystals, pH 7.0 (Sigma # T 3503 or equivalent) Reagent grade. A premixed blend of Tris [Tris(hydroxymethyl)aminomethane] and Tris HCL [Tris(hydroxymethyl)aminomethane hydrochloride]
- Alternatively, a mix of the two components with a weight ratio of 15.5/1; Tris HCL/Tris may be used. These blends produce a pH of 7.0 at 25°C in reagent water. Tris functions as a buffer, binding free chlorine in chlorinated finished waters and prevents the formation of a copper precipitate

Sample Shipment and Storage

- All samples should be iced during shipment and must not exceed 10° C during the first 48 hours after collection. Samples should be confirmed to be at or below 10°C when they are received at the laboratory
- Samples stored in the lab must be held at or below 6° C until extraction, but should not be frozen

Sample and Extract Holding Times

- Method analytes are stable for 14 days in water samples that are collected, dechlorinated, preserved, shipped and stored as described in above
- Samples must be extracted within 14 days
- Sample extracts may be stored in methanol at 0°C or less for up to 21 days after extraction. Samples that are exchanged into reagent water/acetonitrile (60/40) for confirmational analysis may be stored 7 days at 0° C or less. The combined extract holding time should not exceed
 - 21 days

Interferences

- All glassware must be meticulously cleaned. Wash glassware with detergent and tap water, rinse with tap water. Follow by a reagent water rinse
- Non-volumetric glassware can be heated in a muffle furnace at 400° C for 2 hours.
- Method interferences may also be caused by contaminants in solvents, reagents (including reagent water), sample bottles and caps, and other sample processing hardware. This may lead to discrete artifacts or elevated baselines in the chromatograms
- All solvents and equipment must be routinely demonstrated to be free from interferences under the conditions of the analysis. Subtracting blank values from sample results is not permitted in this method
- Matrix interferences may be caused by contaminants that are co-extracted from the sample

Surrogate Analytes (SUR),

Monuron (CAS #150-68-5) & Carbazole (CAS# 86-74-8)

SUR STOCK SOLUTION (5 to 7 mg/mL)

- Accurately weigh 25 to 35 mg of the neat SUR to the nearest 0.1 mg into a tared, 5 mL volumetric flask. Dilute to the mark with the appropriate solvent, methanol for monuron and acetonitrile for cabazole
- Prepare each compound individually. They will be combined in the SUR primary dilution standard

SUR Primary Dilution Standard (500 µg/mL)

• Prepare the SUR Primary Dilution Standard (PDS) by dilution of the SUR stock standards. Add enough of each of the SUR stock standards to a volumetric flask partially filled with methanol to make a 500 µg/mL solution when filled to the mark with methanol

Analyte Stock Standard Solution

- Prepare analyte stock standard solutions for all compounds in methanol except thidiazuron and Diflubenzuron which are prepared in acetone
- Acetone elutes early in the chromatogram and will not interfere with compound quantitation
- Accurately weigh neat material to the nearest 0.1 mg into volumetric flasks, approximately 10 to 12 mg. Thidiazuron is difficult to dissolve but 10 mg of pure material should dissolve in a 10 mL of acetone. Sonication may be used to help dissolve these compounds.

Analyte Primary Dilution Standard (PDS, 200 µg/mL and 10 µg/mL)

- Prepare the Analyte PDS by dilution of the stock standards. Add enough of each stock standard to a volumetric flask partially filled with methanol to make a 200 µg/mL solution when filled to the mark with methanol
- Once prepared, a dilution of the 200 µg/mL solution may be used to prepare a 10 µg/mL solution used for low concentration spiking. The PDS's can be used for preparation of calibration and fortification solutions
- Use at least 5 calibration concentrations to prepare the initial calibration curve
- The lowest concentration of calibration standard must be at or below the MRL
- In this method, 500 mL of an aqueous sample is concentrated to a 1 mL final extract volume

The calibration standards for the development of this method are prepared as below

	Preparation of Calibration Curve Standards				
CAL Level	PDS Conc µg/mL	Volume PDS Standard μL	Final Vol CAL Standard mL	Final Conc CAL Standard µg/mL	Equivalent Conc in 500 mL sample μg/L
1	10	25	1	0.25	0.50
2	10	50	1	0.50	1.00
3	200	5.0	1	1.00	2.00
4	200	25	1	5.00	10.0
5	200	50	1	10.0	20.0
6	200	75	1	15.0	30.0

Analysis Procedure

1. Sample Extraction

- a. Assemble a glass block manifold. Automated extraction equipment may also be used
- b. Place a EUC18156 C18 cartridge(s) on the manifold
- c. Rinse the cartridge(s) using 5 mL of methanol
- d. Slowly draw through leaving a layer covering the frit
- e. Repeat using a second 5 mL aliquot and slowly draw through. Leave enough methanol to cover the frit

Note: Do not let the cartridge dry out after addition of methanol otherwise repeat

- f. Add 5 mL of reagent water to the cartridge and draw through to the level of the frit
- g. Repeat with a second 5 mL aliquot of reagent water

2. Sample Extraction

- a. Add the water sample to the cartridge. Adjust vacuum setting for a flow rate of about 20 mL/minute
- b. Rinse the sample container with reagent water and add to the cartridge
- c. Once the sample has been extracted, turn vacuum setting to high and draw air through for 15 minutes to dry cartridge

3. Sample Elution

- a. Insert a clean collection tube in the vacuum manifold
- b. Add about 3-5 mL of methanol to each cartridge
- c. Draw through to the top of the frit then turn off vacuum
- d. Allow to soak for 30 seconds
- e. Add a second 2-3 mL of methanol and draw through cartridge as a drip
- f. Repeat methanol addition with a third 1-2 mL portion

4. Extract Concentration

- a. Concentrate the extract to about 0.5 mL in a warm water bath 4° C under a gentle stream of $N_{\rm 2}$
- b. Transfer to a 1 mL volumetric flask rinsing the collection tube with methanol
- c. Bring to volume with methanol
- d. Sample is ready for analysis

5. Solvent Exchange for Confirmation Analysis

- a) Samples to be confirmed must be exchanged into reagent water/acetonitrile (60/40)
- b) Transfer the remaining 980 uL of the extract to a 1 mL volumetric (or other appropriate collection tube)
- c) Mark the sample volume then take the extract to dryness in a warm water bath (at ~ 40 $^{\circ}$ C) under a gentle steam of N²
- d) Reconstitute the residue with a mixture of reagent water/acetonitrile (60/40) to the mark made before the extract was taken to dryness. Redissolve the film as thoroughly as possible. Use of a vortex mixer is recommended. Transfer to an appropriate autosampler vial
- e) The best recoveries are obtained when extracts are immediately reconstituted

6. HPLC Analysis—Primary Analysis

Primary HPLC Column: Symmetry 4.6 x 150 mm with 3.5 µm C18 phase or equivalent

HPLC Conditions		
Solvent A	25 mM phosphate buffer	
Solvent B	Acetonitrile	
40% B	0-9.5 minutes	
Linear gradient 40-50% B	9.5-10.0 minutes	
Linear gradient 50-60% B 10.0-14.0 minutes		
Linear gradient 60-40% B HPLC Conditions		
Flow Rate	1.5 mL/minute	
Wavelength	245 nm	
Equilibration time prior to next injection = 15 minutes		

Chromatographic Retention Time Data for the Primary Column

Peak Number	Analyte	Retention Time (min)
1	Tebuthiuron	2.03
2	Thidiazuron	2.48
3	Monuron (SUR)	2.80
4	Fluometuron	4.45
5	Diuron	5.17
6	Propanil	8.53
7	Siduron A	8.91
8	Siduron B	9.76
9	Linuron	11.0
10	Carbazole (SUR)	12.8
11	Diflubenzuron	13.9

7. HPLC Analysis--Confirmation Analysis

Confirmation Column: Supelcosil 4.6 × 150 mm packed with 5 um cyanopropyl stationary phase or equivalent

Conditions		
Solvent A	25 mM phosphate buffer	
Solvent B Acetonitrile		
Linear gradient 20% B 0-11.0 minutes, 1.5 mL/min flow rate		
Linear gradient 20-40% B 11.0-12.0 minutes, 1.5 mL/min flow rate		
40% Bhold to 16 minutes at 1.5 mL/min. flow rate, step to 2.0 mL/min flow rate at 16 min. and		
hold to 20 min		
Linear gradient 40-20% B20.0-20.1 minutes, 2.0 mL/min. flow rate		
Wavelength	240 nm	
Equilibration time prior to next injection = 15 minutes		

Chromatographic Retention Time Data for the Confirmation Column

Peak Number	Analyte	Retention Time (min)
1	Tebuthiuron	2.56
2	Thidiazuron	3.98
3	Monuron (SUR)	4.93
4	Fluometuron	5.94
5	Diuron	7.67
6	Propanil	9.53
7	Siduron A	10.1
8	Siduron B	10.8
9	Linuron	12.2
10	Carbazole (SUR)	14.3
11	Diflubenzuron	15.2

*The analyst should refer to EPA Method 532 "Determination of Phenylurea Compounds in Drinking Water by Solid-Phase Extraction and High Performance Liquid Chromatography with UV Detection", Revision 1.0 Issued June 2000, by M. V. Bassett, S.C. Wendelken, T.A. Dattilio, and B.V. Pepich (IT Corporation) D.J. Munch (US EPA, Office of Ground Water and Drinking Water) EPA, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio 45268

DCN-017009¬192

ENVIRO-CLEAN[®] EPA METHOD 535 GRAPHITIZED CARBON (90 m²) CARTRIDGE

Part Number: EC535156 February 3, 2009

The UCT EC535156 cartridge has been designed to provide a new level of performance in solid-phase extraction for the analysis of acetamide and acetanilide compounds. With its high capture efficiency, fast flow and excellent dry times, laboratory throughput can be significantly improved

Measurement of Chloroacetanilide and Other Acetamide Herbicide Degradates in Drinking Water by Solid-Phase Extraction and Liquid Chromatography/ Tandem Mass Spectrometry (LC/MS/MS)

Method Summary

A 250 mL water sample is drawn through and captured on a **UCT cartridge EC535156** containing 0.5 grams of nonporous graphitized carbon. Acetanilide and acetamide compounds are eluted from the cartridge using a small quantity of methanol containing 10 mM ammonium acetate. The methanol extract is concentrated to dryness by blow down with N₂ in a water bath at 65^oC then reconstituted with 1 mL of water containing 5 mM ammonium acetate. A 100 μ L portion of the aqueous reconstitution is injected into an HPLC fitted with a C18 reverse phase analytical column. Detection occurs by tandem mass spectrometry and is compared to internal standards. A surrogate analyte of known concentration is measured with the same internal standard calibration procedure.

Interferences

Humic and/ or fulvic acid material if present in the water source is co-extracted with this method. High concentrations of these compounds can cause enhancement or suppression of the in the electrospray ionization source or low recoveries on the carbon SPE. Total organic carbon (TOC) is a good indicator of these interferences if present in the water sample.

Condition Cartridge

- Rinse the UCT EC535156 cartridge with 20 mL of 10 mM ammonium acetate/methanol solution
- Rinse cartridge with 30 mL of reagent water. Do not let water drop below level of cartridge packing
- Add about 3 mL of reagent water to the top of the cartridge

Do not let the cartridge go dry during any step otherwise the conditioning process should be started over

Sample Addition

- Add sample water to the cartridge and adjust vacuum so the flow is about 10-15 mL/minute
- Rinse cartridge with 5 mL of reagent water
- Draw air or N₂ through the cartridge at high vacuum (10-15 in/Hg) for 3 minutes

Extract Elution

All glassware must be meticulously washed to avoid contamination

- Insert a clean collection tube into the extraction manifold
- Use 15 mL of 10 mM ammonium acetate/methanol and adjust vacuum to draw through at 5 mL/minute. Solvent will exit the cartridge in a drop wise fashion at this vacuum setting

Eluate Drying

- Concentrate the extract to dryness under a gentle stream of N₂ in a heated water bath at 60^o-70^oC to remove all of the ammonium acetate/methanol
- Reconstitute the dried eluate by adding 1 mL of 5 mM ammonium acetate/methanol solution

Extract Analysis

- Establish operating conditions for the liquid chromatograph and mass spectrometer according to Tables 1-4 in Section 17. See Table A below for RT and precursor ions
- If the analyte peak area exceed the range of the initial calibration curve, the extract may be diluted with 5 mM ammonium acetate/reagent water and adjusting internal standards to compensate for this dilution

*For complete details on Method 535 Version 1.1 the analyst is referred to: J. A. Shoemaker and M. V. Bassett, April 2005, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268

Table A

Triple Quadrupole MS/MS Method Conditions

Analyte	Retention Time	Precursor Ion	Product Energy	Collision Energy
Propachlor OA	7.33	206	134	8
Flufenacet OA	8.67	224	152	10
Propachlor ESA	10.01	256	80	25
Flufenacet ESA	10.81	274	80	25
Dimethenamid OA	13.25	270	198	10
Dimethenamid ESA	14.87&15.11	320	80	25
Alachlor OA	15.86	264	160	10
Acetochlor OA	16.34	264	146	10
Alachlor ESA	18.46	314	80	25
Metolachlor OA	18.60	278	206	8
Acetochlor ESA	19.12	314	80	30
Metolachlor ESA	20.95	328	80	25
Dimethachlor ESA (sur)	12.18	300	80	25
Butachlor ESA (IS)	36.95	356	80	25

DCN-903020-114

Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)

UCT Product: ECDVB156P (500 mg DVB, PE frits, 6 mL cartridge)

EPA Method 537 Version 1.1 January 20, 2011

Method 537 Analytes

Analyte	Acronym	CASRN
N-ethyl perfluorooctanesulfonamidoacetic acid	NEtFOSAA	
N-methyl perfluorooctanesulfonamidoacetic acid	NMeFOSAA	
Perfluorobutanesulfonic acid	PFBS	375-73-5
Perfluorodecanoic acid	PFDA	335-76-2
Perfluorododecanoic acid	PFDoA	307-55-1
Perfluoroheptanoic acid	PFHpA	375-85-9
Perfluorohexanesulfonic acid	PFHxS	355-46-4
Perfluorohexanoic acid	PFHxA	307-24-4
Perfluorononanoic acid	PFNA	375-95-1
Perfluorooctanesulfonic acid	PFOS	1763-23-1
Perfluorooctanoic acid	PFOA	335-67-1
Perfluorotetradecanoic acid	PFTA	376-06-7
Perfluorotridecanoic acid	PFTrDA	72629-94-8
Perfluoroundecanoic acid	PFUnA	2058-94-8

Interferences

- Do not cover glassware with aluminum foil because PFAAs can be potentially transferred from the aluminum foil
- PFAA standards, extracts and samples should not come in contact with any glass containers or pipettes as these analytes can potentially adsorb to glass
- PFAA analyte, IS and SUR standards commercially purchased in glass ampoules are acceptable however all subsequent dilutions must be prepared and stored in polypropylene containers
- The method analytes in this method can also be found in many common laboratory supplies and equipment, such as PTFE (polytetrafluoroethylene) products, LC solvent

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

lines, methanol, aluminum foil and SPE sample transfer lines. These items must be routinely demonstrated to be free from interferences (less than 1/3 the MRL for each method analyte) under the conditions of the analysis by analyzing laboratory reagent blanks

• Humic and/or fulvic material can be co-extracted during SPE and high levels can cause enhancement and/or suppression in the electrospray ionization source or low recoveries.

Total organic carbon (TOC) is a good indicator of humic content of the sample

Preservation Reagent

Compound	Amount	Purpose
Trizma®*	5.0 g/L	Buffer & free CI removal

* Synonym: TRIS HCI (Tris(hydroxymethyl)aminomethane hydrochloride) CASRN 1185-53-1

Internal Standards and Surrogates

Internal Standards Table

Internal Standards	Acronym
Perfluoro-[1,2- ¹³ C ₂]octanoic acid	¹³ C-PFOA
Sodium perfluoro-1-[1,2,3,4- ¹³ C ₄]octanesulfonate	¹³ C-PFOS
N-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid	d ₃ -NMeFOSAA

Internal Standard (IS) Primary Dilution Table

IS	Conc. of IS Stock (μg/mL)	Vol. Of IS Stock (µL)	Final Vol. of IS PDS (µL)	Final Conc. of IS PDS (ng/µL)
¹³ C-PFOA	1000	5.0	5000	1.0
¹³ C-PFOS	50	300.0	5000	3.0
d ₃ -NMeFOSAA	50	400.0	5000	4.0

Surrogates (SUR) Table

Surrogates	Acronym
Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid	¹³ C-PFHxA
Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid	¹³ C-PFDA
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acid	d₅-NEtFOSAA

Surrogate Primary Dilution Table

SUR	Conc. Of SUR Stock (µg/mL)	Vol. of SUR Stock (μL)	Final Vol. of SUR PDS (µL)	Final Conc. Of SUR PDS (ng/µL)
¹³ C-PFHxA	50	100.0	5000	1.0
¹³ C-PFDA	50	100.0	5000	1.0
d₅-NEtFOSAA	50	400.0	5000	4.0

Analyte Solvent Dilution Table

Analyte	Analyte Stock Solvent		
PFHxA	96:4% (vol/vol) methanol:water		
РҒНрА	96:4% (vol/vol) methanol:water		
PFOA	96:4% (vol/vol) methanol:water		
PFNA	96:4% (vol/vol) methanol:water		
PFDA	96:4% (vol/vol) methanol:water		
PFUnA	96:4% (vol/vol) methanol:water		
PFDoA	96:4% (vol/vol) methanol:water		
PFTrDA	100% ethyl acetate		
PFTA	100% ethyl acetate		
PFBS	100% methanol		
PFHxS	100% methanol		
PFOS	100% methanol		
NEtFOSAA 100% methanol			
NMeFOSAA	100% methanol		

Internal Standard Primary Dilution (IS PDS) Standard

Prepare (or purchase) IS PDS at a suggested concentration of 1-4 ng/ μ L in 96:4% (vol/vol) methanol:water. Use 10 μ L of this 1-4 ng/ μ L solution to fortify the final 1-mL extracts. This will yield a concentration of 10-40 pg/ μ L of each IS in the 1-mL extracts.

Procedure

1) Cartridge Preparation

- a. Insert a **ECDVB156P** cartridge in a vacuum manifold or automated extraction system
- b. Add 15 mL of methanol to the cartridge and slowly draw through under vacuum

Note: Do not let the cartridge dry out after addition of methanol otherwise start over

- c. Add 18 mL of reagent water
- d. Draw through under vacuum but do not let water level drop below cartridge frit

2) Sample Extraction

- a. Adjust vacuum setting to achieve a flow rate of about 10-15 mL/min
- b. Draw water through sample cartridge
- c. After sample extraction, rinse sample bottles and reservoir with 2 x 7.5 mL aliquots of reagent water and add to cartridge
- d. Dry cartridge by drawing air through it for 5 minutes at high vacuum

3) Sample Elution

- a. Insert a polypropylene (PP) collection tube in the vacuum manifold
- b. Rinse sample bottle and reservoir with 4 mL of methanol and add to cartridge
- c. Draw through cartridge in dropwise manner
- d. Rinse sample bottle and reservoir with another 4 mL of methanol and add to the cartridge
- e. Draw through cartridge in dropwise manner

4) Extract Concentration

- a. Concentrate the extract to dryness using a gentle stream of N_2 in a heated water bath 60-65° C
- b. Add the appropriate amount of 96:4% (vol/vol) methanol:water solution and the IS PDS to the collection vial
- c. Bring the volume to 1 mL and vortex
- d. Transfer a small aliquot with a plastic pipette to a polypropylene autosampler vial

NOTE: Do not transfer the entire 1-mL aliquot to the autosampler vial because the polypropylene autosampler caps do not reseal after injection. Do not store the extracts in the autosampler vials as evaporation losses can occur. Extracts can be stored in 15-mL centrifuge tubes

5) HPLC Analysis Conditions

Time (min)	% 20 mM		% Methanol	
Initial	60	.0	40.0	
1.0	60	.0	40.0	
25.0	10	.0	90.0	
32.0	10.0		90.0	
32.1	60.0		40.0	
37.0	60.0		40.0	
Flow rate of	0.3 mL/min	10 µ	IL injection	
Waters Atlantis® dC18 2.1 x 150 mm packed with 5.0 µm C18				
stationary phase or equivalent				

LC Method Conditions

ESI-MS Conditions				
Polarity	Negative lons			
Capillary Needle Voltage	-3 kV			
Cone Gas Flow	98 L/hr			
Nitrogen Desolvation Gas	1100 L/hr			
Desolvation Gas Temperature	350° C			

MS/MS Method Conditions					
Segment	Analyte	Precursor Ion (m/z)	Product Ion (m/z)	Cone Voltage	Collision Energy (v)
1	PFBS	299	80	40	25
2	PFHxA	313	269	15	10
3	PFHpA	363	319	12	10
3	PFHxS	399	80	40	40
4	PFOA	413	369	15	10
4	PFNA	463	419	12	10
4	PFOS	499	80	40	40
5	PFDA	513	469	15	10
5	NMeFOSAA	570	419	25	20
5	NEtFOSAA	584	419	25	20
5	PFUnA	563	519	15	10
5	PFDoA	613	569	15	10
6	PFTA	663	619	15	10
6	PFTA	713	669	15	10
2	¹³ C-PFHxA	315	270	15	10
5	¹³ C-PFDA	515	470	12	12
5	d ₅ -NEtFOSAA	589	419	25	20
4	¹³ C-PFOA	415	370	15	10
4	¹³ C-PFOS	503	80	40	40
5	d ₃ -NMeFOSAA	573	419	25	20

Summarized 15 from: Shoemaker, J.A., Grimmett P.E., Boutin, B.K., Method 537, Determination Of Selected Perfluorinated Alkyl Acids In Drinking Water By Solid-Phase Extraction And Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS), Version 1.1, September 2009, National Exposure Research Laboratory, Office Of Research And Development, U. S. Environmental Protection Agency, Cincinnati, Ohio 45268

Listing of instrument manufacturers does not constitute endorsement by UCT

DCN-218030-203

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

Determination of Endothall in Drinking Water by Ion-Exchange Extraction, Acid Methanol Methylation and Gas Chromatography/Mass Spectrometry

UCT Product: EC548006 (ENVIRO-CLEAN[®] 548 Bio-Rex[®] 5/6mL) EPA Method 548.1 Revision 1.0

September 28, 2009

Procedure

1) Condition Cartridge

- a) Remove the seal caps on each end of the **EC548006** cartridge(s) and place on the vacuum manifold
- b) Draw each of the following reagents through the cartridge at a rate of 10 mL/minute, slow drip
- c) Add 10 mL of methanol and draw through to top of frit
- d) Add 10 mL of reagent water and draw through to top of frit
- e) Add 10 mL of 10% H₂SO₄ in methanol and draw through to top of frit
- f) Add 10 mL of reagent water and draw through to top of frit
- g) Add 20 mL 0f 1 N NaOH and draw through to top of frit
- h) Add 20 mL of reagent water and draw through to top of frit

Note: Do not allow the cartridge to become dry between steps otherwise repeat steps starting with c)

It is critical that the extraction steps be followed exactly in order for the cartridge to effectively function in sample clean up and extraction

2) Sample Addition

- a) Fill the reservoir with 60 mL of sample and adjust vacuum for a sample flow rate of 3 mL/minute
- b) Add the remaining sample to keep the reservoir filled
- c) After the sample has been drawn through the cartridge add 10 mL of methanol and draw through
- d) Dry cartridge for 5 minutes under 10-20 in Hg vacuum
- e) Place a culture tube inside the manifold to collect the eluant

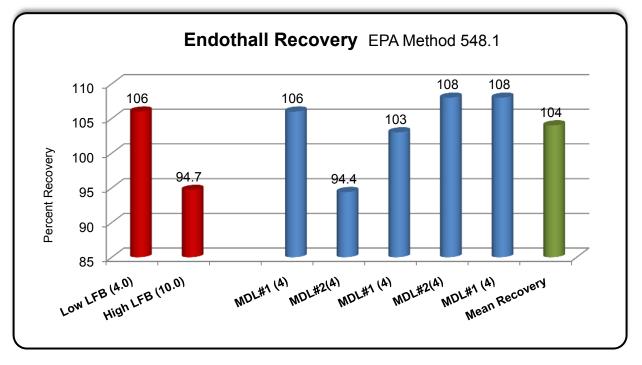
3) Extract Elution

- a) Elute the cartridge with 8 mL of 10% H₂SO₄ in methanol
- b) Follow with 6 mL of methylene chloride (CH₂Cl₂).
- c) Elute over a 1 minute period

4) Sample Derivatization and Partition

- a) Place a cap on the culture tube and hold for 1 hour at 50 $^{\circ}\mathrm{C}$
- b) Pour the contents of the culture tube into a 125 mL separatory funnel rinsing the tube with 2 x 0.5 mL aliquots of methylene chloride
- c) Add the rinse to the separatory funnel
- d) Add 20 mL of 10% Na₂SO₄ in reagent water to the separatory funnel. Vigorously shake the separatory funnel several times venting the funnel each time
- e) Allow the phases to separate then drain the organic layer into a 15 mL graduated centrifuge tube
- f) Repeat the above extraction with 2 additional 2 mL aliquots of methylene chloride.
 Add this to the methylene chloride in the centrifuge tube
- g) Sample is ready for GC/MS analysis

5) Analysis


- a) Analyze the extract by injecting 2 µL of the concentrated extract into a GC/MS
- b) Identify endothall by comparison of its mass spectrum to a reference sample

Retention Times and Method Detection Limits

Retention Time (min)				Method	Detection	Limits
Compound	Column A	Column B	Column C	GC/MS	2 g/L spike	FID
Endothall	16.02	19.85	18.32	1.79	µg/L	0.7
D10-Acenapththene	14.69					

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved Column A: DB-5 fused silica capillary for GC/MS, 30 m x 0.25 mm, 0.25 micron film MS inlet temperature = 200°C Injector temperature = 200°C Temperature Program: Hold five minutes at 80°C, increase to 260°C at 10°/min, hold 10 minutes

- Column B: FID primary column, RTX Volatiles, 30 m x 0.53 mm I.D., 2 micron film Detector temperature = 280°C Injector Temperature = 200°C Carrier gas velocity = 50 cm/sec Temperature program: Same as Column A.
- **Column C:** FID confirmation column, DB-5, 30 m x 0.32 mm ID, 0.25 micron film. Carrier Gas velocity = 27 cm/sec Same injector, detector, and temperature program as Column A

Endothall Recovery Using EC548006 Cartridges

Interferences

- Major potential interferences in this ion-exchange procedure are other naturally occurring ions such as calcium, magnesium and sulfate. Calcium and magnesium (>100 mg/L) can complex with the endothall anion and make it unavailable for capture as an anion
- Sulfate anions (>250 mg/L) can act as a counter ion displacing anionic endothall on the ion exchange column. Elevated levels of these ions may contribute to reduced recovery of the primary analyte

One or both of the following remedies may be used reduce these interferences:

- Sample dilution to reduce the concentration of these ions (10:1)
- Ethylenediamine tetraacetic acid (EDTA) addition to complex the cations (186 mg/100 mL sample)

For samples containing moderately high levels of these ions, add 186 mg of EDTA per 100 mL sample (0.005 M). For samples containing higher levels of sulfate, sample dilution may be required in addition to the EDTA.

Using western surface water as an example (2000 mg/L sulfate) it was successfully analyzed after dilution by a factor of 10 and the addition of 75 mg EDTA per 100 mL of the diluted sample (0.002 M). Samples containing intermediate levels of sulfate can be analyzed with smaller dilution factors. Guidelines on dilution factors and EDTA addition are shown below.

Sulfate mg/L	Dilution Factor	Added EDTA mg/100 mL
<250	1:1	186
250-500	1:2	125
500-1250	1:5	75
>1250	1:10	75

Note: Dilution should not be employed if adequate recovery is attained by the addition of EDTA alone

*For complete details on Method 548.1 "Determination of Endothall in Drinking Water by Ion-Exchange Extraction, Acid Methanol Methylation and Gas Chromatography/Mass Spectrometry", the analyst is referred to: J. W. Hodgeson, August 1992, Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268

DCN-218030-115

Determination of Diquat and Paraquat in Drinking Water by Liquid-Solid Extraction and High Performance Liquid Chromatography with Ultraviolet Detection*

UCT Products: ENVIRO-CLEAN[®] EEC08156 (500 mg C8, 6 mL cartridge) or ENVIRO-CLEAN[®] ECUNI549 (500 mg C8, 83 mL Universal cartridge) July 18, 2011

Analyte	CASRN
Diquat 1,1'-ethylene-2,2'-bipyridium dibromide salt	85-00-7
Paraquat 1,1'-dimethyl-4,4'-bipyridium dichloride salt	1910-42-5

Initial Preparation

- Since diquat and paraquat are ionic analytes there is the potential for adsorption on glass surfaces
- Use only plastic labware. Labware must be thoroughly washed and dried before use
- Adjust a 250 mL of sample to pH 7 9 with 10 % aqueous sodium hydroxide or 10% aqueous hydrochloric acid solution depending upon initial pH
- Assemble a C8 extraction cartridge in an appropriate manifold apparatus
- If the sample contains particulates, filter through 0.45 µm Nylon membrane filter
- Ammonium hydroxide is volatile. Make fresh solutions daily from relatively new ammonium hydroxide stock

Sample Cleanup

- Cleanup procedures may not be necessary for a relatively clean sample matrix
- If the sample contains particulates the entire sample should be passed through a 0.45 mm Nylon of PTFE membrane filter into a plastic container before starting extraction

Stock Standard Solutions

Diquat dibromide and Paraquat dichloride Stock Solutions (1000 mg/L)

- 1. Dry diquat (diquat dibromide monohydrate) and paraquat (paraquat dichloride tetrahydrate) salts in an oven at 110°C for three hours. Cool in a desiccator
- 2. Repeat process to a constant weight.
- 3. Weigh 0.1968 g of dried diquat salt and 0.1770 g of dried paraquat salt
- Transfer to a silanized glass or polypropylene 100 mL volumetric flask. Add approximately 50 mL of deionized water then dilute to the mark with deionized water

Calibration

In order to closely match calibration standards to samples, process standards by the following method:

- Condition a cartridge according to section 1 below.
- Pass 250 mL of reagent water through the cartridge and discard the water.
- Dry the cartridge by passing 5 mL of methanol through it. Discard the methanol.
- Pass 4.0 mL of the eluting solution through the cartridge and catch in a 5 mL silanized volumetric flask.
- Fortify the eluted solution with 100 µL of the ion-pair concentrate and with 500 µL of the stock standard and dilute to the mark with eluting solution. This provides a 10:1 dilution of the stock.
- Use serial dilution of the calibration standard by the same method to achieve lower concentration standards.

Procedure

1. Condition Cartridge

The cartridge must be conditioned properly before extraction

- a) Place C8 cartridge(s) on a vacuum manifold system
- b) Draw the following solutions through the cartridge in the stated order. The flow rate through the cartridge should be approximately 10 mL/min

Note: Do not to let the cartridge go dry once starting the addition of solutions

- c) Add 5 mL of reagent water to the cartridge and draw through to waste
- d) Add 5 ml of methanol to the cartridge and soak for about one minute
- e) Apply vacuum to draw most of the methanol through the cartridge. Leave a thin layer on top of the frit
- f) Add 5 ml reagent water to the cartridge
- g) Apply vacuum and draw most of the water through the cartridge. Leave a thin layer of water on the frit
- h) Apply 5 mL of conditioning Solution A to the cartridge

Solution A: Dissolve 0.500 grams cetyl trimethyl ammonium bromide and 5 mL of ammonium hydroxide in 500 mL of reagent water. Dilute to 1000 mL

- i) Draw a small amount through the cartridge leaving a thin layer on the frit
- j) Soak for one minute
- k) Use 5 mL of reagent grade water to rinse the Solution A from the cartridge. Allow a thin layer of water to remain on the cartridge frit
- I) Rinse the cartridge with 10 mL of methanol
- m) Rinse the cartridge with 5 mL of reagent grade water
- n) Condition the cartridge with 20 mL of Solution B.

Solution B: Dissolve 10 g 1-hexanesulfonic acid sodium salt and 10 mL of ammonium hydroxide in 250 mL of DI water then dilute to 500 mL

o) Retain Solution B in the cartridge to keep it activated. Do Not Rinse

2) Sample Extraction

- a) Determine the pH of the sample. Adjust to 7.0 9.0 with 10% NaOH or 10% v/v HCl before extracting
- b) Using a volumetric flask add 250 mL of the water sample to the reservoir and start the vacuum at a rate of 3 to 6 mL per minute
- c) Draw the sample through the cartridge draining as much water from the sample bottle as possible
- d) Rinse the cartridge with 5 ml of HPLC grade methanol
- e) Draw vacuum through the cartridge for 1 minute to dry
- Remove the filtration assembly and insert a silanized 5 mL volumetric (plastic vessel is preferred) flask for collection of the eluate

3) Cartridge Elution

- a) Add 4.5 ml of Cartridge Eluting Solution to the cartridge
- b) Allow to soak for one minute

Cartridge Elution Solution: Dissolve 13.5 mL of orthophosphoric acid and 10.3 mL of diethylamine in 500 mL of DI water, then dilute to 1 liter

- c) Elute at 1-2 mL (drop by drop) per minute drawing all solution through the cartridge
- d) Using cartridge **lon-pair solution**, add 100 μ L to the flask

Ion-pair Concentrate: Dissolve 3.75 grams of 1-hexanesulfonic acid in 15 mL of the **Cartridge Elution Solution** and dilute to 25 mL in a volumetric flask with additional **Cartridge Elution Solution**

- e) Bring the eluate to a known volume of 5 mL using Cartridge Elution Solution
- f) The extract is now ready for HPLC analysis as shown below

4) HPLC Analysis

Mobile Phase – Prepare mobile phase by adding reagents 1-4 to 500 mL DI water:

- 1. 13.5 mL of orthophosphoric acid
- 2. 10.3 mL of diethylamine
- 3. 3.0 g of 1-hexanesulfonic acid, sodium salt
- 4. Mix and bring to a final volume of 1 L with DI water

HPLC Conditions

Column: Phenomenex Spherisorb, 3F, 4.6 mm x 100 mm or equivalent **Column Temperature:** 35° C **Flow Rate:** 2.0 mL/min., Ion-Pair Mobile Phase **Injection Volume:** 200 μL **Photodiode Array Detector Settings: Wavelength Range:** 210 - 370 nm **Sample Rate:** 1 scan/sec. **Wavelength Step:** 1 nm **Integration Time:** 1 sec. **Run Time:** 5.0 min. **Quantitation Wavelengths:** Diquat 308 nm, Paraquat 257 nm

*EPA Method 549.2 Revision 1.0, Determination of Diquat and Paraquat in Drinking Water by Liquid-Solid Extraction and High Performance Liquid Chromatography with Ultraviolet Detection, J.W. Munch (USEPA) and W.J. Bashe (DynCorp/TAI) - Method 549.2, Revision 1.0 (1997), National Exposure Research Laboratory, Office Of Research And Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268

DCN-118170-116

Determination of Polycyclic Aromatic Hydrocarbons in Drinking Water by Liquid-Solid Extraction and HPLC with Coupled Ultraviolet and Fluorescence Detection*

UCT Products: **ECUNIPAH** (2000 mg unendcapped C18, 83 mL cartridge) **ECSS15M6** (5000 mg Na₂SO₄, 6 mL cartridge)

EPA Method 550.1 September 07, 2010

Procedure

1) Cartridge Preparation

- a. Wash with four (4) x 10 mL aliquots of methylene chloride (MeCl₂)
- b. Wash with four (4) x 10 mL aliquots of methanol (MeOH)
- c. Wash with two (2) x 10 mL aliquots of reagent water

Do not let the cartridge dry out after step 1) c. otherwise repeat starting at 1) b.

2) Sample Extraction

- a. Adjust the vacuum setting for a flow rate of 10-15 mL per minute
- b. Add the 1 liter sample to the cartridge
- c. Rinse sample bottle with reagent water, add to cartridge and draw through
- d. Dry cartridge by drawing full vacuum for 10 minutes

3) Sample Elution and Drying

- a. Elute the cartridge dropwise by using two (2) x 5 mL aliquots of MeCl₂ and collect
- b. Rinse sample container with 5 mL of $MeCl_2$, add to cartridge and draw through
- c. Prepare a sodium sulfate drying column **ECSS15M6** by rinsing with 10 mL of MeCl₂ and discard
- d. Add the eluate to the drying column, draw through and collect
- e. Rinse the drying column with a 2 mL aliquot of MeCl₂ and collect

4) Sample Evaporation

- a. Evaporate the extract using a gentle stream of N_2 with a water bath or heating block temperature of 40°C. Evaporate to 1.0 mL
- b. Add 3.0 mL of acetonitrile (ACN)
- c. Concentrate to a final volume of 0.5 mL

5) Sample Analysis

a. Inject 5 - 100 µL into an HPLC

*See "Determination of Polycyclic Aromatic Hydrocarbons in Drinking Water by Liquid-Solid Extraction and HPLC with Coupled Ultraviolet and Fluorescence Detection", W. J. Bashe & T.V. Baker (Technology Applications, Inc, Environmental Monitoring Systems Laboratory, US Environmental Protection Agency, Cincinnati, OH

DCN-017009-191

Determination of Haloacetic Acids and Dalapon in Drinking Water by SPE and GC/ECD*

UCT Products: **EUQAX156** (quaternary amine with Cl⁻ counter ion, 6 mL cartridge)** **CLTTP050** (CLEAN-THRU[®] Tips) **AD0000AS** (cartridge adapter) **RFV0075P** (75 mL reservoir) **ECSS25K** (sodium sulfate anhydrous, ACS, 60 mesh)

Method 552.1 Revision 1.0 April 4, 2011

Summary

Method 552.1 is a gas chromatographic method for determination of haloacetic acid compounds, including Dalapon in drinking water, ground water, raw water and other waters at any intermediate stage of treatment. This method is used over the concentration ranges typically found in drinking water ranging from less than 1 to over 50 μ g/L. The observed MDL's may vary according to the particular matrix analyzed and the specific instrumentation employed.

In this procedure, a 100 mL sample of water is adjusted to pH 5 and then extracted using an anion exchange cartridge. Method 552.1 suggests the use of polymeric-based anion exchange resins. This application uses silica-based anion exchange, therefore the conditioning steps have been modified to accommodate this silica-based sorbent. Exceptional recoveries are reported as shown in the data below.

Haloacetic Acids

The following RCRA compounds are determined by method 552.1 in water

Analyte	Abbreviation	CASRN
Monochloroacetic acid	MCAA	79-11-8
Dichloroacetic acid	DCAA	79-03-9
Trichloroacetic acid	TCAA	66-03-9
Monobromoacetic acid	MBAA	79-08-3
Bromochloroacetic acid	BCAA	5589-96-8
Dibromoacetic acid	DBAA	631-64-1
Dalapon		75-99-0

Safety

• The toxicity or carcinogenicity of each reagent used in this method has not been defined

Sample Collection, Preservation, and Storage

- Collect samples in all glass amber bottles with PTFE lined screw caps
- Prior to sample collection add ammonium chloride (NH₄Cl) to the bottles to produce a concentration of 100 mg/L
- Alternatively, add 1.0 mL of a 10 mg/mL aqueous solution of NH₄Cl during collection then shake well
- Refrigerate at 4°C or keep on ice and away from light until extraction
- Analyze within 48 hours after collection

Interferences

Care and attention to potential interferences will result in better analysis

- Method interferences may be caused by contamination of solvents, reagents, glassware or other lab apparatus
- Glassware must be scrupulously clean
- Heat all glassware except volumetric flasks in a muffle oven at 400°C. Thermally stable compounds such as PCB's may not be eliminated by this treatment. Thorough rinsing with reagent grade acetone may be substituted for the heating step
- Glassware must be rinsed with 1:9 HCl prior to use
- Reduced analyte recoveries may be observed in high ionic strength matrices particularly waters containing sulfate concentrations above 200 mg/L
- Improved recoveries may be obtained by sample dilution but at the expense of higher MDL's
- Tribromoacetic acid has not been included because of problems associated with stability and chromatography
- Organic acids and phenols, especially chlorinated compounds, are the most direct potential interferences with this method
- For each set of samples analyzed, the reagent blank concentration values exceeding 0.1 µg/L can be subtracted from the sample concentration
- Interfering contamination may occur when a sample with a low concentration of analytes is analyzed following a sample of relatively high concentration. Routine between-sample rinsing of the sample syringe and associated equipment with methyl-*t*-butyl ether (MTBE) can minimize sample cross-contamination

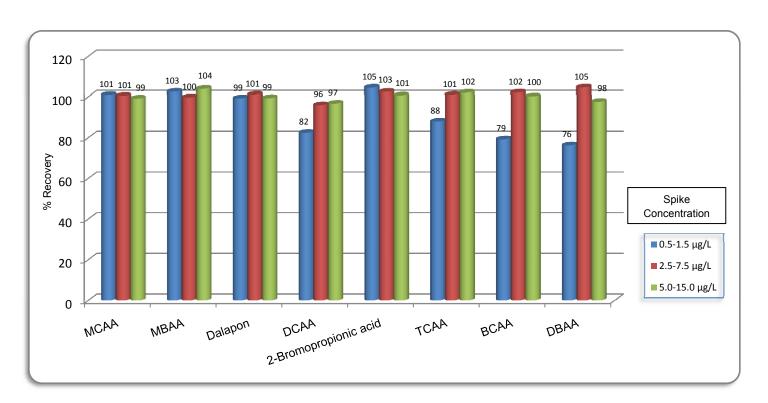
Standard Stock Solution

Prepare a stock solution of each analyte of interest at a concentration of 1-5 mg/mL in MTBE. Method analytes may be obtained as neat materials or ampulized solutions (>99% purity) from commercial suppliers

Prepare Primary Dilution Standard (PPDS)

Prepare PPDS solutions by combining and diluting stock standard solutions with methanol. Prepare stock standard solutions in the 1-2 mg/mL range for all analytes including the surrogate. Aliquots of each stock standard solution (approximately 50-250 μ L) are added to 100-mL methanol to yield a primary dilution standard containing the following approximate concentrations of analytes

Analyte	Concentration, µg/mL
Monochloroacetic Acid (MCAA)	3
Monobromoacetic acid (MBAA)	2
Dalapon	2
Dichloroacetic acid (DCAA)	3
2-bromopropionic acid ^b	1
Trichloroacetic acid (TCAA)	1
Bromochloroacetic acid	2
Dibromoacetic acid	1


The primary dilution standards are used to prepare calibration standards of at least three concentration levels (optimally five) of each analyte with the lowest standard being at or near the MDL of each analyte. The concentrations of the other standards should define a range containing the expected sample concentrations or the working range of the detector

Calibration Standards

- Perform by extracting calibration standards in fortified reagent water using the SPE cartridge
- Prepare a five-point calibration curve 100- mL reagent water samples at pH 5 with 20, 50, 100, 250, and 500 μL of the primary dilution standard
- Analyze each calibration standard in triplicate including a reagent water blank
- Include the surrogate 2-bromopropionic acid with the calibration standards in the table

Internal Standard Fortifying Solution

 Prepare a solution of 1,2,3-trichloropropane at 1 mg/mL by adding 36 µL of the neat material to 50 mL of MTBE. From this stock standard solution, prepare a primary dilution standard at 10 mg/L by the addition of 1-100 mL MTB

Analyte Recovery at Various Spike Concentrations (N=7)

Procedure

1) Cartridge Conditioning

- a) Assemble a glass block manifold system
- b) Place UCT EUQAX156 cartridge(s) in the bulkhead fittings of the vacuum manifold. If nylon fittings are used, Clean-Thru[®] tips are recommended to prevent damage to the fittings by sulfuric acid
- c) Attach adapters and reservoirs to the cartridges
- d) Add a 10 mL aliquot of methanol (MeOH) to the cartridge
- e) Draw slowly through at 2 mL/min flow
- f) Add 10 mL of reagent water then slowly draw through

Note: After the conditioning steps do not let the cartridge go dry before addition of sample

2) Sample Extraction

- a) Check the sample pH (preferably with a pH meter) to assure pH 5 \pm 0.5
- b) Add 250 μ L of the surrogate primary dilution standard to water sample
- Add the 100 mL sample to the cartridge while drawing through under vacuum at 2 mL/minute
- d) After the sample has passed through the cartridge, draw 10 mL of MeOH through the cartridge to dry the sorbent

3) Cartridge Elution

- a) Dissemble the vacuum manifold and insert a screw cap culture tube
- b) Add 2 mL of 10% H_2SO_4 /MeOH to the cartridge
- c) Elute at a rate of 1.5 mL/minute (slow drip)
- d) Repeat with a second aliquot of 2 mL of 10% H₂SO₄/MeOH

4) Derivatization and Solvent Partition

- a) To each of the elutant samples from 3) d) add 2.5 mL of MTBE
- b) Agitate in a vortex mixer for 5 seconds
- c) Place the culture tubes containing the MTBE in a heating block at 50° C for 1 hour
- Remove from heating block and add to each tube 10 mL of a 10% solution of sodium sulfate (NaSO₄)
- e) Agitate for 10 seconds on a vortex mixer
- f) Allow the phases to separate for 5 minutes
- g) Transfer the upper MTBE layer to a 15 mL graduated conical centrifuge tube
- h) Add another 1 mL portion of MTBE
- i) Agitate using a vortex mixer, allow to settle then transfer with a Pasteur pipette to the other MTBE collected in step g)
- j) Add 200 μ L IS to each extract then additional MTBE to bring the final volume to 5 mL
- k) Transfer a portion of the extract to capped GC vials
- I) Sample is ready for analysis by GC-ECD

5) Sample Analysis—Gas Chromatography

a) Inject 2 µL using the recommended conditions listed below

GC/ECD Conditions

GC: Agilent 6890N coupled with ECD, equipped with 7683 auto sampler and Chemstation software for data acquisition and analysis. Other instruments may be used

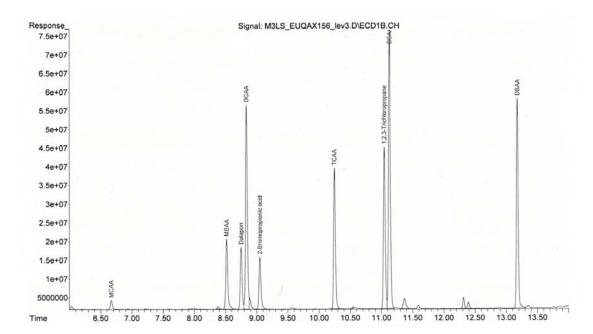
GC capillary column: Restek Rtx®-1701, 30m x 0.25mm x 0.25um

Injector: 2 µL splitless injection at 200 °C, with a split delay of 0.5 min.

Liner: 4 mm splitless gooseneck, 4mm ID x 6.5mm OD x 78.5mm (UCT GCLGN4MM)

Oven temperature program:

- Initial oven temperature of 55 °C
- hold for 5 minutes
- ramp at 7 °C/min to 115 °C
- ramp at 40 °C/min to a final temperature of 280 °C
- hold for 2.3 minutes
- Total run time 20 minutes


Carrier gas: Helium at a constant flow of 1.5 mL/min

ECD temperature: 280 °C

Make up: N₂ at 30 mL/min

Date rate: 20 Hz, save data from 6 to 14 minutes

Chromatogram Showing Elution of Haloacetic Acids

Analyte Elution Order	RSD @ 0.5-1.5 μg/L %	MDL μg/L @ 0.5-1.5 μg/L	RSD @ 2.5-7.5 μg/L %	RSD @ 5.0-15.0 μg/L %
MCAA	4.6	0.22	1.9	2.2
MBAA	3.2	0.10	1.6	2.0
Dalapon	1.3	0.04	1.0	1.0
DCAA	1.5	0.06	1.1	1.5
2-bromopropionic acid (surrogate)	2.6	0.04	0.6	1.7
TCAA	1.9	0.03	2.2	1.0
1,2,3-trichloropropane (IS)				
BCAA	10	0.25	2.4	3.4
DBAA	10	0.12	2.1	7.6

*For complete details on Method 552.1, August 1992, the analyst is referred to: Hodgeson, Jimmie W, Becker, David, (Technology Applications, Inc., "Determination of Haloacetic acids And Dalapon In Drinking Water by Ion-Exchange Liquid-Solid Extraction and Gas Chromatography with an Electron Capture Detector", Environmental Monitoring Systems Laboratory,, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268

**Other cartridge and sorbent masses are available from UCT

DCN-114040-212

Determination of Benzidines and Nitrogen-Containing Pesticides in Water Liquid-Solid Extraction And Reverse Phase High Performance Liquid Chromatography/Particle Beam/Mass Spectrometry*

UCT Products: ECDVB156 (500 mg, DVB, 6 mL cartridge) ECUNIDVB500 (500 mg, DVB, 83 mL cartridge)

EPA Method 553 Revision 1.1 September 08, 2010

Procedure

1. Cartridge Preparation

- a. Rinse the cartridge(s) with a 10 mL aliquot of methanol
- b. Slowly draw methanol to the top of the frit
- c. Add a second 10 mL aliquot of methanol and draw through to top of frit
- d. Add 10 mL of reagent water to the cartridge and draw through to top of frit

Note: Do not let the cartridge go dry after addition of methanol otherwise repeat at 1) c.

2. Sample Extraction

- a. Adjust sample pH to 7 using either 1N NaOH or HCI
- b. Add water sample to the cartridge and draw through at 20 mL/minute
- c. Rinse the sample container with 10 mL of reagent water and add to the cartridge
- d. Dry sorbent by drawing full vacuum for 10 minutes
- e. Place a clean collection vial in the vacuum manifold

3. Cartridge Elution

- a. Add 15 mL of methanol to the sample container, swirl then add to the cartridge
- b. Elute the cartridge with 2 x 7.5 mL aliquots of methanol dropwise

4. Extract Concentration

- a. Concentrate the extract under a gentle stream of N_2
- b. Bring to a known volume after concentration step
- c. Sample is now ready for analysis

DCN-218030-194

^{*}The analyst should refer to EPA Method 553 "Determination Of Benzidines and Nitrogen-Containing Pesticides in Water By Liquid-Liquid Extraction or Liquid-Solid Extraction and Reverse Phase High Performance Liquid Chromatography/Particle Beam/Mass Spectrometry", Revision 1.1 Issued August 1992, by Thomas D. Behymer, Thomas A. Bellar, James S. Ho, William L. Budde, US EPA, Office of Ground Water and Drinking Water, EPA, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio 45268

Water Analyses

www.unitedchem.com

Bisphenol A Analysis in Water by GC/MS Using an ENVIRO-CLEAN[®] 200 mg C18 Extraction Cartridge Part #: EEC1812Z February 5, 2009

1. Prepare Sample

- a) Using 100 mL of sample water, adjust the pH to 7 or less using 100mM acetic acid
- b) Add internal standard to water sample

Note: Bisphenol A has a pKa value of approximately 9.5

2. Condition ENVIRO-CLEAN[®] Extraction Cartridge

- a) Place a cartridge(s) on a multistation vacuum manifold or automated extraction system
- b) Condition the cartridge by adding 3 mL of methanol
- c) Partially draw the methanol through until the surface of the liquid reaches the top of the cartridge frit
- d) Wait 1 minute then add 3 mL of DI water to the cartridge.
- e) Add 1 mL of 100 mM acetic acid
- f) Draw liquid through until it touches the top of the frit
- g) Cartridge is now ready for sample extraction

Note: Do not allow the sorbent to completely dry out after the addition of methanol, otherwise repeat procedure.

3. Apply Sample

a) Add sample to cartridge at a rate of approximately 5 mL/minute by adjusting vacuum

4. Wash Cartridge

- a) Wash by drawing through 5 mL of deionized water
- b) Dry sorbent (5 minutes at > 10 inches Hg)

5. Elute

- a) Insert a collection vial in the vacuum manifold
- b) Rinse sample bottle with 3 mL of methanol
- c) Add the methanol to the cartridge
- d) Elute at 5 mL per minute
- e) Add 3 mL of methanol to the cartridge
- f) Elute at 5 mL per minute

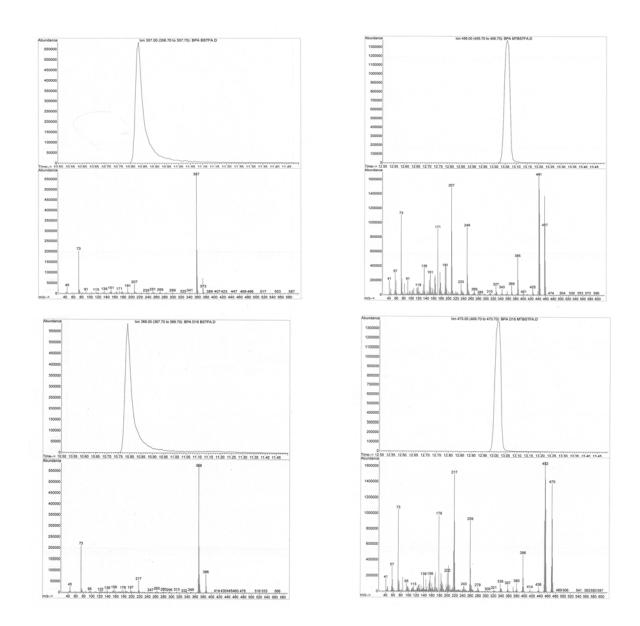
6. Evaporate

- 1. Evaporate methanol eluate using gentle N_2 (< 40°C) to dryness
- 2. Add 50 µL of ethyl acetate to dissolve
- 3. Add 50 µL of reagent MTBSTFA* or BSTFA** to derivatize. Vortex
- 4. Heat mixture for 20-30 minutes @ 70°C
- 5. Cool. Sample is now ready for GC injection

*MTBSTFA-- N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide **BSTFA-- *N*,*O* -Bis(trimethylsilyl)trifluoroacetamide

7. Instrument Conditions

- Column: Rtx-5MS, 30m, 0.25 mm ID, 0.50 μm df (5% diphenyl/95% dimethyl polysiloxane)
- Injector Temperature: 250°C
- Detector Temperature: 250° C
- Oven Program: Initial 70°C, ramp @ 20°C/minute to 320°C, hold 3.0 min
- Purge Flow: Initially Off. On at 0.75 minutes
- Split Flow: 30 mL/minute
- Inject: 2 µL


8. Quantitate

MS in El (+) mode:

BSTFA

	Primary ion	Secondary ion	<u>Tertiary ion</u>
BPA	357	373	207
BPA-D16	368	386	217
MTBSTFA			
BPA	441	457	207
BPA-D16	452	470	217

Chromatogram Showing Retention Time for Bisphenol A in Water

Spike Concentration: 0.15 μg/L Calc Concentration: 0.157 μg/L Recovery: 105%

DCN-905020-132

Bisphenol A Analysis in Water by LC/MS/MS Using an ENVIRO-CLEAN[®] 200 mg C18 Extraction Cartridge

Part #: EEC1812Z February 5, 2009

1. Prepare Sample

- a) Using 100 mL of sample water, adjust the pH to 7 or less using 100mM acetic acid
- b) Add internal standard to water sample

Note: Bisphenol A has a pKa value of approximately 9.5

2. Condition ENVIRO-CLEAN[®] Extraction Cartridge

- a) Place a cartridge(s) on a multistation vacuum manifold or automated extraction system
- b) Condition the cartridge by adding 3 mL of methanol
- c) Partially draw the methanol through until the surface of the liquid reaches the top of the cartridge frit
- d) Wait 1 minute then add 3 mL of DI water to the cartridge.
- e) Add 1 mL of 100 mM acetic acid
- f) Draw liquid through until it touches the top of the frit
- g) Cartridge is now ready for sample extraction

Note: Do not allow the sorbent to completely dry out after the addition of methanol, otherwise repeat procedure.

3. Apply Sample

a) Add sample to cartridge at a rate of approximately 5 mL/minute by adjusting vacuum

4. Wash Cartridge

- a) Wash by drawing through 5 mL of deionized water
- b) Dry sorbent (5 minutes at > 10 inches Hg)

5. Elute

- a) Insert a collection vial in the vacuum manifold
- b) Rinse sample bottle with 3 mL of methanol
- c) Add the methanol to the cartridge
- d) Elute at 5 mL per minute
- e) Add 3 mL of methanol to the cartridge
- f) Elute at 5 mL per minute

Evaporate

- a) Evaporate methanol eluate using gentle N₂ (< 40°C) to less than 500 μ L
- b) Bring sample volume to 500 μ L
- c) Sample is ready for injection

6. Quantitate

a. LC-MS/MS MRM transition (negative ion mode)

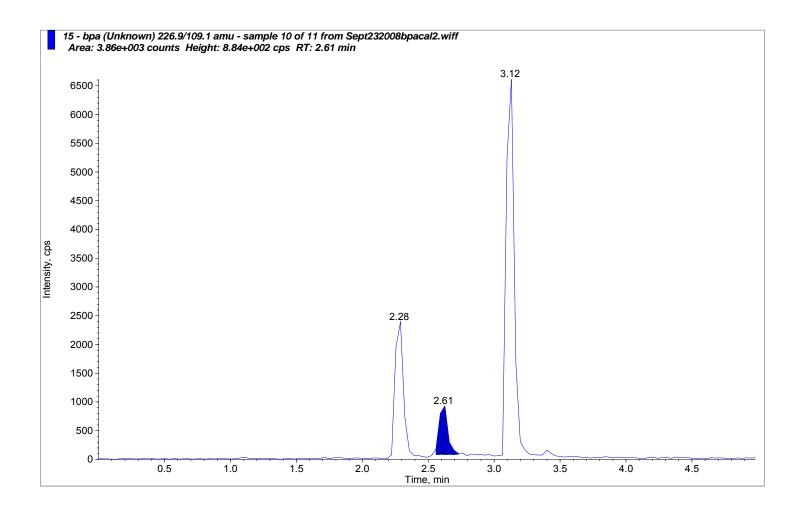
Instrumental & Conditions:

Column: 100 x 2.1 (3 $\mu m)$ Selectra[®] Phenyl, UCT, LLC Instrument: Applied Biosytems Triplequad LC/MS/MS (other systems may be used)

- Detector: API3200 QTrap
- bisphenol A Precursor ion mass 226.9, product ion mass 109.1
- *bisphenol A standard deuterated A-D16. Precursor ion mass 241.1, Product ion mass 223.1

Inject: 5-10 µL

Mobile Phase: acetonitrile/0.1% formic acid


Flowrate: 0.5 mL/ minute

Flow Program

Time in minutes	% Acetonitrile	% 0.1% Formic Acid
0	30	70
3.0	90	10
3.5	30	70
5.0	30	70

Chromatogram Showing Retention Time for Bisphenol A in Water

Spike concentration: 15 μg/L Calc Recovery: 15.70 μg/L Recovery: 105%

DCN-905020-131

Determination of Diesel Range Non-halogenated Organics Using GC/FID by Method 8015D*

UCT Products: ECUNIPAH (ENVIRO-CLEAN[®] Universal PAH/DRO 2000 mg/83 mL cartridge)

February 3, 2011

Method Summary

Method 8015D may be used to determine the concentrations of several nonhalogenated volatile organic compounds and semivolatile organic compounds using GC with flame ionization detection.

 Diesel Range Organics (DRO) corresponds to the range of alkanes from C₁₀ to C₂₈ and covering a boiling point range of approximately 170° C - 430° C

Sample Collection, Preservation, and Storage

• See sample collection options EPA Method 5035A

Interferences

- Solvents, reagents, glassware, and other sample processing hardware may yield artifacts and/or interferences to sample analysis
- All these materials must be demonstrated to be free from interferences under the conditions of the analysis by analyzing method blanks
- Specific selection of reagents and purification of solvents by distillation in all-glass systems may be necessary
- Contamination by carryover occurs whenever high-concentration and low-concentration samples are analyzed in sequence. To reduce the potential for carryover, the sample syringe or purging device must be rinsed out between samples with an appropriate solvent
- All glassware must be scrupulously cleaned. Clean all glassware as soon as possible after use by rinsing with the last solvent used followed by detergent washing with hot water, and rinses with tap water and organic-free reagent water
- Drain the glassware and dry it in an oven (except volumetric glassware) at 130° C for several hours or rinse it with methanol
- FID is a non-selective detector. There is a potential for many non-target compounds present in samples to interfere with this analysis and potential for analytes to be resolved poorly, especially in samples that contain many analytes.

Reagents and Standards

- Reagent grade chemicals must be used in all tests
- Organic-free reagent water
- Methanol, CH₃OH Pesticide quality or equivalent
- Methylene Chloride unpreserved, pesticide residue quality or equivalent
- Fuels, e.g., diesel Purchase from a commercial source
- Alkane standard Standard contains a homologous series of *n*-alkanes for establishing retention times (e.g., C₁₀-C₂₈ for diesel)

Stock Standards

- Prepared from pure standard materials or purchased as certified solution
- Standards must be replaced after 6 months

Secondary Dilution Standards

- Using stock standard solutions, prepare secondary dilution standards, as needed either singly or mixed together
- Secondary dilution standards should be stored with minimal headspace for volatiles
- Check frequently for signs of degradation or evaporation, especially just prior to preparing calibration standards

Recommended GC Columns

The choice of GC column will depend on the analytes of interest, expected concentrations, and intended use of the results. The capillary columns are necessary for petroleum hydrocarbon analyses and are recommended for all other analyses. Other columns and may be employed if the analyst can demonstrate acceptable performance.

- Establish the GC operating conditions appropriate for the GC column being utilized and the target analytes specified in the project plan
- Optimize the instrumental conditions for resolution of the target analytes and sensitivity
- Suggested operating conditions and GC programs are given below for the recommend columns:

(DRO) 30-m x 0.53-mm ID fused-silica capillary column chemically bonded with 5% methyl silicone (DB-5, SPB-5, RTx, or equivalent), 1.5-µm film thickness

- Carrier gas (He) flow rate: 5-7 mL/min
- Makeup gas (He) flow rate: 30 mL/min
- Injector temperature: 200° C
- Detector temperature: 340° C
- Temperature program: Initial temperature: 45° C, hold for 3 minutes
- Program: 45° C to 275° C, at 12° C/min
- Final temperature: 275° C, hold for 12 minutes

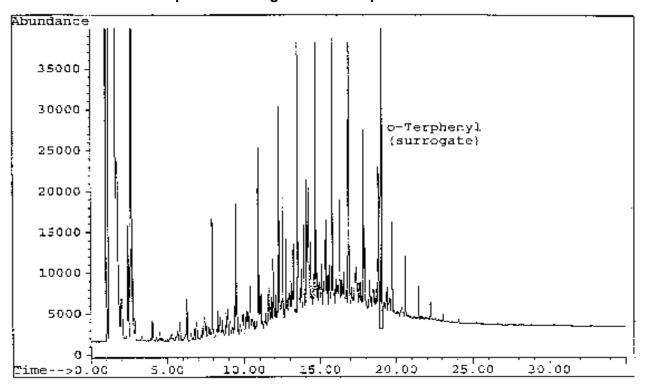
Procedure**

1. Condition Cartridge

- a) Assemble an all glass vacuum manifold system UCT ECUCTVAC1, ECUCTVAC3 or ECUCTVAC6 (1,3 or 6 station)
- b) Place a **ECUNIPAH** cartridge(s) on the vacuum manifold*
- c) With vacuum off add 10 mL of methylene chloride to the cartridge
- d) Let it soak for 1 minute
- e) Turn on vacuum and draw through to waste
- f) Draw vacuum through the cartridge to remove all methylene chloride
- g) Add 10 mL of methanol to the cartridge
- h) Let it soak for 1 minute
- i) Draw the methanol to the level of the frit
- j) Add 10 mL of deionized water to the cartridge
- k) Let it soak for 1 minute
- I) Draw most of the water to waste but do not allow the sorbent to dry

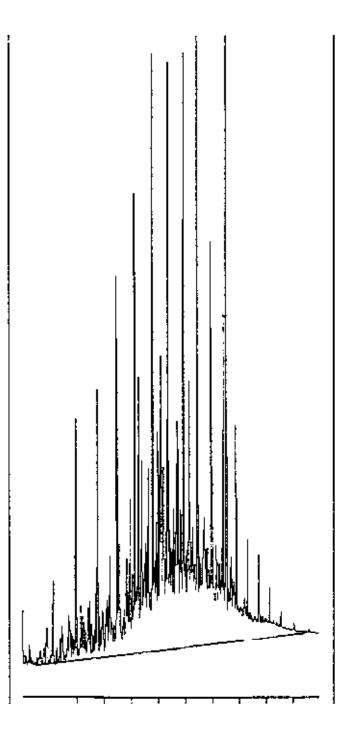
Note: Do not let the cartridge go completely dry after addition of methanol otherwise repeat starting at step 1.g)

2. Sample Addition


- a) Add required surrogates to the sample
- b) Shake
- c) Adjust the pH of the sample to 2 or less using 5 mL of 1:1 HCl
- d) Shake
- e) Add the sample to the cartridge under vacuum. Draw the sample through the cartridge no faster than 20 30 minutes per liter
- f) Allow the cartridge to dry under full vacuum for 5 minutes***

3. Extract Elution

- a) Place a collection tube or vial containing approximately 1 cm of pre-baked sodium sulfate anhydrous in the vacuum manifold
- b) Rinse sample bottle with 10 mL of methylene chloride to remove any analyte from the glass
- c) Add the methylene chloride rinse to the cartridge
- d) Allow to soak for 2 minutes then draw through
- e) Repeat this procedure three more times using 10 mL aliquots of methylene chloride
- f) Dry the extract by passing it through 5 grams of ECSS25K anhydrous sodium sulfate
- g) Thoroughly rinse the collection device with methylene chloride and add this solvent to the sodium sulfate


4. Concentration

- a) Concentration of final extract using a micro Kaderna-Danish flask equipped with a 3ball Snyder column is recommended to avoid loss of low boiling alkanes. A micro-Snyder column can be used to evaporate the extract to a 1 mL final volume.
- b) Extracts should not be stored with headspace for extended periods of time as low recoveries will result

Example Chromatogram of a 30 Ppm Diesel Standard

Example Chromatogram of a 30 Ppm Diesel Standard With The Baseline Projected Between C₁₀ and C₂₈

*Summarized from Method 8015D Nonhalogenated Organics Using GC/FID, Revision 4, June 2003, and associated appropriate methods

**(steps 1- 4 added to this method summary for use with UCT PAH/DRO cartridges)

***Faster drying results can be obtained by removing the cartridge during drying and shaking or tapping the excess moisture from the bottom of the cartridge. Drying times are approximate. Do not over dry as low recoveries may result

DCN-112020- 121

Polycyclic Aromatic Hydrocarbons (PAH) from a Water Matrix

UCT Part Products: **ECUNIPAH** (2000 mg, unendcapped C18, 83 mL cartridge) **ECSS25K** (anhydrous sodium sulfate)

January 26, 2011

Polynuclear Aromatic Compounds Recovered in this Method

РАН	CASRN	РАН	CASRN
Acenaphthene	83-32-9	Chrysene	218-01-9
Acenaphthylene	208-96-8	Dibenzo(a,h)anthracene	53-70-3
Anthracene	120-12-7	Fluoranthene	206-44-0
Benzo(a)anthracene	56-55-3	Fluorene	86-73-7
Benzo(a)pyrene	50-32-8	Indeno(1,2,3-cd)pyrene	193-39-5
Benzo(b)fluoranthene	205-99-2	Naphthalene	91-20-3
Benzo(g,h,i)perylene	191-24-2	Phenanthrene	85-01-8
Benzo(k)fluoranthene	207-08-9	Pyrene	129-00-0

1. Condition Cartridge

- a) Place ECUNIPAH cartridge(s) on the vacuum manifold*
- b) With vacuum turn off add 10 mL of methylene chloride to the cartridge
- c) Let it soak for 1 minute
- d) Turn on vacuum and draw through to waste
- e) Add 10 mL of methanol to the cartridge
- f) Let it soak for 1 minute
- g) Draw the methanol to the level of the frit
- h) Add 10 mL of deionized water to the cartridge
- i) Let it soak for 1 minute
- j) Draw most of the water to waste but do not allow the sorbent to dry

Note: Do not let the cartridge go dry after addition of methanol otherwise repeat starting at step 1. e)

2. Sample Addition

- a) Add surrogates to the sample
- b) Shake
- c) Add the sample to the cartridge under vacuum. Draw the sample through the cartridge in 20 30 minutes (10 50 ml/min)
- d) Allow the cartridge to dry under full vacuum for 10 minutes**

Optional: Before proceeding to the drying step use UCT Zero-Blank[™] Filter (**ECBLANK**) to reduce potential background contamination

3. Extract Elution

- a) Place a collection tube or vial in the vacuum manifold
- b) Rinse sample bottle with 10 mL of methylene chloride
- c) Add the methylene chloride rinse to the cartridge
- d) Allow to soak for 1 minute then draw through
- e) Repeat this procedure 3 more times using 10 mL aliquots of methylene chloride
- f) Dry the extract by passing it through 5 grams of ECSS25K anhydrous sodium sulfate
- g) Thoroughly rinse the collection device with methylene chloride
- h) Add the methylene chloride rinse to the sodium sulfate

4. Concentration and Analysis

- a) Using a standard analytical evaporator with gentle N₂ flow and low temperature
- (40° C) carefully concentrate the extract to a final volume for GC/MS analysis.
- b) Solvent exchange into acetonitrile and bring to a 1 ml final volume for HPLC analysis
- c) Sample is now ready for analysis

Note: Most analysis errors are caused by poor concentration technique. Do not concentrate below 0.5 mL as low recoveries may result

*The ENVIRO-CLEAN[®] Universal PAH cartridge can be used on standard vacuum manifolds (# VMFF016GL) and standard disk manifolds (#ECUCTVAC6) (with adapter part # ECUCTADP). The cartridge is designed to fit all automated extraction systems

**Faster drying results can be obtained by removing the cartridge during drying and shaking or tapping the excess moisture from the bottom of the cartridge. Drying times are approximate. Do not over dry as low recoveries may result

DCN-218030-207

Organochlorine Pesticides and Polychlorinated Biphenyls by Solid-Phase Extraction

UCT Products:

EEC181M6 (1000 mg C18, 6 mL Cartridge) or **ECUNIC18** (1100mg C18, Universal Cartridge) July 18, 2011

Compounds Recovered Using This Method

Analyte	CASRN
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8
4,4'-DDD	72-54-8
4,4'-DDE	72-55-9
4,4'-DDT	50-29-3
Alachlor	15972-60-8
Aldrin	309-00-2
Captafol	2425-06-1
Carbophenthion	786-19-6
Chlordane - not otherwise specified (n.o.s.)	57-74-9
Chlorobenzilate	510-15-6
Chloroneb	2675-77-6
Chloropropylate	5836-10-2
Chlorothalonil	1897-45-6
Dacthal (DCPA)	1861-32-1
Diallate	2303-16-4
Dichlone	117-80-6
Dichloran	99-30-9
Dicofol	115-32-2
Dieldrin	60-57-1
Endosulfan I	959-98-8
Endosulfan II	33213-65-9
Endosulfan sulfate	1031-07-8
Endrin	72-20-8
Endrin Aldehyde	7421-93-4
Endrin Ketone	53494-70-5
Etridiazole	2593-15-9
Halowax-1000	58718-66-4
Halowax-1001	58718-67-5
Halowax-1013	12616-35-2
Halowax-1014	12616-36-3
Halowax-1051	2234-13-1
Halowax-1099	39450-05-0
Heptachlor	76-44-8
Heptachlor epoxide	1024-57-3
Hexachlorobenzene	118-74-1
Hexachlorocyclopentadiene	77-47-4
Isodrin	465-73-6
Methoxychlor	72-43-5
Mirex	2385-85-5
Nitrofen	1836-75-5
Pentachloronitrobenzene (PCNB)	82-68-8
Permethrin (cis + trans)	52645-53-1
Perthane	72.56-0
Propachlor	1918-16-7
Strobane	8001-50-1
Toxaphene	8001-35-2

Trans-Nonachlor	39765-80-5
Trifluralin	1582-09-8
α-ΒΗC	319-84-6
α-chlordane	5103-71-9
β-BHC	319-85-7
γ-BHC (Lindane)	58-89-9
γ-chlordane	5103-74-2
δ-ΒΗϹ	319-86-8

PCB's Recovered Using This Method

Compound	CASRN	IUPAC #
Aroclor 1016	12674-11-2	-
Aroclor 1221	11104-28-2	-
Aroclor 1232	11141-16-5	-
Aroclor 1242	53469-21-9	-
Aroclor 1248	12672-29-6	-
Aroclor 1254	11097-69-1	-
Aroclor 1260	11096-82-5	-
2-Chlorobiphenyl	2051-60-7	1
2,3-Dichlorobiphenyl	16605-91-7	5
2,2',5-Trichlorobiphenyl	37680-65-2	18
2,4',5-Trichlorobiphenyl	16606-02-3	31
2,2',3,5'-Tetrachlorobiphenyl	41464-39-5	44
2,2',5,5'-Tetrachlorobiphenyl	35693-99-3	52
2,3',4,4'-Tetrachlorobiphenyl	32598-10-0	66
2,2',3,4,5'-Pentachlorobiphenyl	38380-02-8	87
2,2',4,5,5'-Pentachlorobiphenyl	37680-73-2	101
2,3,3',4',6-Pentachlorobiphenyl	38380-03-9	110
2,2',3,4,4',5'-Hexachlorobiphenyl	35065-28-2	138
2,2',3,4,5,5'-Hexachlorobiphenyl	52712-04-6	141
2,2',3,5,5',6-Hexachlorobiphenyl	52663-63-5	151
2,2',4,4',5,5'-Hexachlorobiphenyl	35065-27-1	153
2,2',3,3',4,4',5-Heptachlorobiphenyl	35065-30-6	170
2,2',3,4,4',5,5'-Heptachlorobiphenyl	35065-29-3	180
2,2',3,4,4',5',6-Heptachlorobiphenyl	52663-69-1	183
2,2',3,4',5,5',6-Heptachlorobiphenyl	52663-68-0	187
2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	40186-72-9	206

Procedure

1) Condition Cartridge

- a) Assemble a suitable vacuum manifold system
- b) Place cartridge(s) in the bulkhead fittings or cartridge adapters of the vacuum manifold. If nylon fittings are used, UCT CLEAN-THRU[®] Tips (CLTTP050) are recommended to prevent damage to the fittings by sulfuric acid.
- c) Attach adapters and reservoirs to the cartridge(s) if necessary
- d) Rinse cartridge with 10 mL of methylene chloride (MeCl₂)
- e) Let the $MeCl_2$ soak for 1.5 min.
- f) Using vacuum draw the MeCl₂ to waste
- g) Add 10 mL of acetone. Let the acetone soak for 1.5 minutes
- h) Draw the acetone to waste
- i) Dry the cartridge using full vacuum for a few seconds
- j) Add10 ml of methanol and allow the methanol to soak for 1.5 min.

Note: Do not allow the cartridge to go dry otherwise repeat starting with step 1) j)

- k) Draw some of the methanol through leaving a layer just covering the frit
- I) Add 20 mL of deionized water. Draw most of the water through to waste but do not allow the sorbent to completely dry

2) Sample Addition

a) Adjust sample pH to \leq 2 using 1:1 sulfuric acid

Note: Use a pH meter to accurately determine sample pH in deionized water. Do not use pH paper

- b) Mix thoroughly
- c) Start vacuum and add the sample. Draw sample through the cartridge at a rate ≤ 50 mL/minute (1 L should pass through in 20 minutes or longer)
- d) Allow the cartridge to dry under full vacuum for 10 minutes**

3) Extract Elution

- a) Place a collection tube or vial under the cartridge
- b) Add 5 mL of acetone to the sample bottle and swirl to remove any residue
- c) Add the acetone to the cartridge. Allow the solvent to soak for 1 minute then draw into collection vial
- d) Repeat this procedure 3 more times using a 10 mL portions of MeCl₂
- e) Prepare a 5 gram bed of anhydrous sodium sulfate anhydrous in a funnel using glass wool
- f) Dry the extract by passing it through the funnel of sodium sulfate anhydrous
- g) Carefully rinse the collection vial with MeCl₂, then add to the sodium sulfate, rinsing the sodium sulfate and collect

4) Concentration and Analysis

a) Carefully concentrate the extract. Solvent exchange if necessary

Note: Most extraction errors are caused by poor concentration technique

1) K-D Concentration Technique

Sample extracts may be concentrated to the final volume necessary by using the K-D technique or nitrogen evaporation.

- a) Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10 mL concentrator tube to an evaporation flask
- b) Collect the dried extract in the K-D concentrator
- c) Rinse the collection tube and drying funnel then quantitatively transfer into the K-D flask with an additional 20-mL portion of solvent
- d) Add boiling chips to the flask then attach a three-ball Snyder column
- e) Attach the solvent vapor recovery glassware (condenser and collection device to the Snyder column of the K-D apparatus)
- f) Pre-wet the Snyder column by adding about 1 mL of methylene chloride or acetone
- g) Place the K-D apparatus on a hot water bath (15 20° C above the boiling point of the solvent) so that the concentrator tube is partially immersed in the hot water

- h) Adjust the vertical position of the apparatus and the water temperature as necessary to complete the concentration in 10 - 20 min. At the proper rate of distillation the boiling chips of the column will actively chatter, but the chambers should not flood
- i) When the apparent volume of liquid reaches 1 mL, remove the K-D apparatus from the water bath and allow it to drain and cool for at least 10 min.
- j) If a solvent exchange is needed quickly remove the Snyder column, add 50 mL of the exchange solvent and a new boiling chip
- k) Reattach the Snyder column. Concentrate the extract increasing the temperature of the water bath to maintain a proper distillation rate
- Remove the Snyder column. Rinse the K-D flask and the lower joints of the Snyder column into the concentrator tube with 1 - 2 mL of solvent
- m) Adjusted to a final volume of 5.0 10.0 mL using an appropriate solvent

Note: If further concentration is necessary, use either the micro-Snyder column technique or a N₂ evaporation technique described below

2) Micro-Snyder Column Technique

- Add a fresh clean boiling chip to the concentrator tube and attach a two-ball micro-Snyder column directly to the concentrator tube
- Attach the solvent vapor recovery glassware (condenser and collection device) to the micro-Snyder column of the K-D apparatus, following the manufacturer's instructions
- Pre-wet the Snyder column by adding 0.5 mL of methylene chloride or the exchange solvent
- Place the micro-concentration apparatus in a hot water bath so that the concentrator tube is partially immersed in the hot water
- Adjust the vertical position of the apparatus and water temperature, as necessary, to complete the concentration in 5 - 10 min. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood
- When the apparent volume of liquid reaches 0.5 mL, remove the apparatus from the water bath and allow it to drain and cool for at least 10 min.
- Remove the Snyder column and rinse its lower joints into the concentrator tube with 0.2 mL of solvent
- Adjust the final extract volume to 1.0 2.0 mL

3) Nitrogen Evaporation Technique

 Place the concentrator tube in a warm bath (30° C) and evaporate the solvent to 0.5 mL using a gentle stream of clean, dry N₂ (filtered through a column of activated carbon)

Note: New plastic tubing must not be used between the carbon trap and the sample as phthalate interferences may be introduced

- Rinse down the internal wall of the concentrator tube several times with solvent during the concentration
- Position the concentrator tube to avoid condensing water into the extract
- Do not allow extract to become dry. If the volume of solvent is reduced below 1 mL, some analytes may be lost
- The extract may now be cleaned up or analyzed for analytes using the appropriate technique(s)
- If the sample is not analyzed immediately, cover the concentrator tube and store in a refrigerator. If the extract will be stored longer than 2 days, transfer to a vial with a PTFE-lined screw-cap and store in a refrigerator

**Faster drying results can be obtained by removing the cartridge during drying and shaking or tapping the excess moisture from the bottom of the cartridge. Drying times are approximate. Do not over dry. Low recoveries could result

*For complete details on Method 8081B "Organochlorine pesticides by Gas Chromatography/Mass Spectrometry," December 1996,and 8082A, Polychlorinated Biphenyls by Gas Chromatography," the analyst is referred to Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268

DCN-118170-221

EPA Method 1664 Hexane Extractable Material HEM

UCT Part Numbers:

ECUNIOGXF ENVIRO-CLEAN[®] Universal Oil and Grease 83 mL Cartridges July 18, 2011

1) Assemble

- a) Assemble cartridge adapters on the vacuum manifold
- b) Place **ECUNIOGXF** cartridge(s) on each vacuum station needed
- c) Connect the manifold to a suitable trap and attach the trap to a vacuum system capable of attaining a minimum of 25" Hg (635 mm) of vacuum
- d) Insert waste collection vial in manifold (optional)

2) Prepare Water Sample

- a) Adjust the pH of the sample to less than 2 by adding 5 mL of 6N HCl or 2.5 mL of concentrated $\rm H_2SO_4$
- b) If acid was added to the sample in the field do not add more unless the pH is greater than 2

Note: Gloves are recommended as skin oils may affect final sample weight

3) Condition the Cartridge

- a) Rinse sides of cartridge and bottle holder with 10 mL of hexane
- b) Allow cartridge to soak for 1 minute
- c) Draw the hexane through the cartridge using vacuum
- d) Discard the hexane from waste vial
- e) Draw full vacuum through the cartridge for 2 minutes to dry
- f) Add 10 mL of methanol to the cartridge
- g) Slowly draw the methanol through leaving a layer on the cartridge frit
- h) Soak for one minute
- i) Remove waste vial and discard methanol

Note: From this point on do not let the cartridge dry out otherwise repeat at step f)

- j) Add 30 mL of DI water to the cartridge
- k) Draw the water through the cartridge to waste

4) Sample Addition

- a) Add the 1 liter water sample directly to the cartridge
- b) Draw the sample through the cartridge under low vacuum. This may take several minutes depending on the solids in the sample. (Note 1) Increase vacuum pressure if necessary. Do not exceed 500 mL/minute
- c) Remove the cartridge and tap any excess water from the bottom of the cartridge
- d) Replace cartridge and allow to dry under full vacuum for 10 minutes
- e) Remove any water remaining in the bottom support of the cartridge with a paper towel if necessary

5) Elution

- a) Prepare an extract collection vial containing about 8 mm (0.3 inch) of anhydrous sodium sulfate
- b) Place the vial in the manifold station under the cartridge
- c) Rinse the water sample bottle with 10 mL of hexane
- d) Add the hexane to the cartridge
- e) Soak cartridge for 2 minutes
- f) Turn on vacuum and slowly draw the hexane through the cartridge and into the collection vial
- g) Turn off vacuum then repeat steps 5 c) f) 2 additional times with 10 mL of hexane
- h) Do not allow the solvent to splash into the collection vial
- i) Add another 10 mL of hexane to the cartridge, rinsing the bottle holder
- j) Soak cartridge for 2 minutes
- k) Draw the hexane through the cartridge

6) Dry the Extract

- a) Remove the collection vial from the manifold and cover with a screw cap
- b) Shake the extract to form a water/hexane emulsion and immediately pour the extract through a sodium sulfate funnel or column containing approximately 40 g of anhydrous sodium sulfate held in place with a glass wool plug or frit. **Do not use filter paper**
- c) Collect the extract in a clean, pre-weighed vessel
- d) Rinse the collection vial with hexane and add it to the sodium sulfate. This will rinse the vial and the sodium sulfate

7) Gravimetric analysis

a) Carefully evaporate the hexane using a TurboVap[®] or similar evaporator at 40° C until the extract just reaches dryness

Note: Do not over dry or low recoveries will result

Do not dry on a hot plate or in an oven or over dry as low recoveries may result

- b) Allow to cool to room temperature in a desiccator before weighing
- c) Record this weight as the mass per unit volume of oil and grease and report as HEM as mg/L

Notes

- 1) If very high solids are present, add glass wool to the cartridge prior to extraction to prevent clogging and improve flow. The glass wool must be thoroughly rinsed as part of the cartridge during the elution step.
- 2) Stearic acid must be in solution in the spiking solution or low recoveries will result. If small crystals are present in the spiking solution, sonicate or shake until dissolved.

DCN-118170-122

Solid-Phase Extraction and Determination of Organotin by Micro-Liquid Chromatography Electrospray Ion Trap MS

(Part A Water Samples)

UCT Products: ECUNIC18 (C18 endcapped, 1100mg/83mL cartridge)

EPA Method 8323

March 22, 2010

Analytes Determined Using This Method

Analyte	CAS No	LOD
Tributyltin chloride	1461-22-9	780 pg
Dibutyltin dichloride	683-18-1	970 pg
Monobutyltin trichloride	1118-46-3	1 ng
Triphenyltin chloride	668-34-8	NA
Diphenyltin dichloride	1135-99-5	920 pg
Monophenyltin trichloride	1124-19-2	NA

Note: Organotins can bond to glass surfaces, glassware must be specially treated All glassware used in the extraction and analysis of organotins must be acid washed using the following procedure.

- Wash glassware in hot soapy water then rinse with DI water
- Prepare a pH 2 acid bath using 12 N HCl and soak glassware in acid for 24 hours
- Remove glassware from bath then rinse with DI water followed by a methanol rinse
- Place in a 60°F oven until dry

Procedure

1. Initial Preparation

- a) Fill a 2 liter volumetric flask with sample water
- b) Adjust pH to 2.5 by adding about 600 μL of 12N HCL
- c) Stopper flask and invert several times to mix acid

2) Cartridge Conditioning

- a) Add 10 mL of methanol to the cartridge to activate
- a) Briefly turn on vacuum to draw through a small amount to top of frit
- b) Wait 1-2 minutes
- c) Add 10 mLs of a methanol/1% acetic acid solution
- d) Draw about 2 mL through the cartridge then turn off vacuum
- e) Let solution sit for 1-2 minutes then draw through
- f) Add 10 mLs of reagent water to cartridge and partially draw through

Note: Do not let the cartridge dry out after start of activation otherwise start over at step 2. a)

3) Sample Extraction

- Add the 2 liter sample to the cartridge and draw through at approximately 50 mL/minute (fast drip)
- b. Rinse volumetric flask and cartridge sides with a 100 mLs of reagent water and draw through

4) Elution

- a. Dry cartridge by drawing full vacuum for 10 minutes
- b. Place a clean, treated collection tube in the manifold
- c. Add a **first** portion of 10 mLs of methanol/1% acetic acid solution to the cartridge rinsing the sides during addition then slowly draw through cartridge
- d. Add a **second** 10 mL portion of methanol/1% acetic acid solution to the cartridge then slowly draw through
- e. Add a **third** 10 mL portion of methanol/1% acetic acid solution to the cartridge then slowly draw through

Micro-concentration by TurboVap[®] Nitrogen Evaporation

- Place the concentrator tube in the TurboVap[®] or other analytical evaporator in a lukewarm water bath at 30° C
- 2. Evaporate the solvent volume to 0.5 mL using a gentle stream of clean, dry N₂
- 3. The internal wall of the tube must be rinsed down several times with the final solvent (methanol/1% acetic acid) during the evaporation
- 4. Do not allow the extract to become dry
- 5. Transfer the extract to a 2 mL glass vial with a PTFE-lined screw-cap or crimp-top vial and store refrigerated at 4° C
- 6. Sample is ready for µ-LC-ES-ITMS analysis

DCN-218030-185

Nitroaromatics and Nitramines by High Performance Liquid Chromatography (HPLC) Aqueous Matrices

UCT Product: ECDVB156 (500 mg, DVB, 6 mL cartridge)

EPA Method 8330 September 16, 2009

The following RCRA compounds are determined by this method

Analyte	CAS	Abbreviation	% Recovery n=3
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine	2691-41-0	HMX	100
Hexahydro-1,3,5-trinitro-1,3,5-triazine	121-82-4	RDX	110
1,3,5-Trinitrobenzene	99-35-4	1,3,5-TNB	100
1,3-Dinitrobenzene	99-65-0	1,3-DNB	100
1,4-Dinitrobenzene	10025-4	1,4-DNB	97
Methy-2,4,6-trinitrophenyInitramine	47945-8	Tetryl	85
Nitrobenzene	98-95-3	NB	100
2,4,6-Trinitrotoluene	118-96-7	TNT	94
4-Amino-2,6-dinitrotoluene	19406-51-0	4-Am-DNT	120
2-Amino-2,6-dinitrotoluene	35572-78-2	2-Am-DNT	110
2,4-Dinitrotoluene	121-14-2	2,4-DNT	98
2,6-Dinitrotoluene	606-20-2	2,6-DNT	110
2-Nitrotoluene	88-72-2	2-NT	90
3-Nitrotoluene	99-08-1	3-NT	91
4-Nitrotoluene	99-99-0	4-NT	92
Nitroglycerin	55-63-0	NG	100
Pentaerythritol tetranitrate	78-11-5	PETN	100
3,5-Dinitroaniline	618-87-1	3,5-DNA	68
1-Nitronaphthalene	86-57-7	NN	97
o-Dinitrobenzene	528-29-0	o-NB	100

Table 1

Safety

• Extra caution that should be taken when handling the analytical standard neat material for the explosives

Interferences

- 2, 4-DNT and 2, 6-DNT elute at similar retention times on C18 columns using method separation conditions. If it is not apparent that both isomers are present or are not detected an isomeric mixture should be reported
- Tetryl is thermally labile (decomposed with heat at temperature above room temperature) and decomposes in methanol/water solutions. All aqueous samples expected to contain tetryl should be diluted with acetonitrile and acidified with sodium bisulfate to pH <3 prior to filtration
- Degradation products of tetryl appear as a shoulder on the 2,4,6-TNT peak when using C18 columns

Note: All samples should be stored at 2° to 4° C prior to extraction and should be extracted within 14 days of collection

Sample Preparation--Aqueous matrices, (e.g. water)

(from Method 3535)

Important Notes:

- Any particulate matter in the original sample must be included in the sample aliquot that is extracted.
- The sample container must be rinsed with solvent as the majority of organic analytes are hydrophobic and may adhere to the sample container surfaces.
- Do not concentrate explosives residue to dryness as they may DETONATE
- For explosives and nitramines or nitroaromatics the extraction pH should be as received in the sample
- Using a graduated cylinder, measure 1 liter of sample water. A smaller sample size may be used when analytical sensitivity is not a concern
- Add 5.0 mL of methanol and surrogate standards to all samples and blanks
- Add matrix spikes standards to representative sample replicates
- Adjustment of sample pH may result in precipitation or flocculation reactions and potentially remove analytes from the aqueous portion. Transfer the precipitate with rinses to the SPE extraction cartridge
- Do not let the cartridge dry out after cartridge conditioning with acetonitrile (ACN)

Glass Apparatus Washing

Analyte	1 st solvent wash	2 nd solvent wash	3 rd solvent wash	
Explosives	5 mL acetone	15 mL isopropanol	15 mL methanol	
Nitramines, Nitroaromatics	5 mL ACN	15 mL ACN		

1) Cartridge Conditioning

a) Follow the 4 steps in the table for solvent quantities and soak times

Analyte	Condition Step 1	Step 2	Step 3	Step 4
Explosives	20 mL ACN, 3 min*	20 mL ACN	50 mL DI water	50 mL DI water
Nitramines, Nitroaromatics	15 mL ACN, 3 min*	30 mL DI water		

Draw solvents through the cartridge under low vacuum

Do not let the cartridge dry out once cartridge is conditioned. This will affect analyte recovery

2) Sample Extraction

- a) Add the contents of the sample bottle to the cartridge
- b) Adjust vacuum to about 10-15 mm Hg to obtain a uniform flow rate of about 10 ml per minute. This will require 1 hour for sample extraction
- c) After all the sample is drawn through, draw air through the cartridge for 15 minutes to dry it
- d) Do not dry for longer than 20 minutes as lower recovery may result

3) Cartridge Elution

a) Insert a collection tube in the base of the vacuum manifold

For Explosives

- b) Add 4 mL of ACN and soak for 3 minutes
- c) Draw through using gravity flow or very low vacuum into a collection tube
- d) Store extract in freezer until analysis

For Nitramines and Nitroaromatics

- b) Add 5 mL ACN, soak for 3 minutes
- c) Draw through using a gravity flow or very low vacuum into a collection tube
- d) Store extract in freezer until analysis

4) Extract Concentration (if necessary)

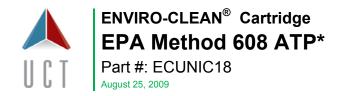
- a) Concentrate the extract to 0.7 mL under a gentle stream of nitrogen in a warm bath at 40° C
- b) Transfer the extract to a 1 mL volumetric flask
- c) Add internal standard for a extract concentration of 5 μ g/mL
- d) Extract is now ready for analysis by HPLC

RP-HPLC Columns for the Analysis of Explosive Residues					
Primary Columns	C-18 reversed-phase HPLC column, 25-cm x 4.6-mm, 5 μ m C8 reversed-phase HPLC column, 15-cm x 3.9-mm, 4 μ m				
Secondary Columns	CN reversed-phase HPLC column, 25-cm x 4.6-mm, 5 μm Luna Phenyl-Hexyl reversed-phase HPLC column, 25-cm x 3.0-mm, 5 μm				

Injection volume: 100 µL

UV Detector: Dual 254 & 210 nm or Photodiode Array

Mobile phase: For C18 & CN column, 50:50 methanol:water


Flow Rate: 1.5 mL/minute

Analyte	LC-18 RT minutes	LC-CN RT minutes
НМХ	2.44	8.35
RDX	3.78	6.15
1,3,5-TNB	5.11	4.05
1,3-DNB	6.16	4.18
3,5-DNA	6.90	NA
Tetryl	6.93	7.36
NB	7.23	3.81
NG	7.74	6.00
2,4,6-TNT	8.42	5.00
4-Am-DNT	8.88	5.10
2-Am-DNT	9.12	5.65
2,6-DNT	9.82	4.61
2,4-DNT	10.05	4.87
2-NT	12.26	4.37
4-NT	13.26	4.41
PETN	14.10	10.10
3-NT	14.23	4.45

Retention Times and Capacity Factors

*For complete details on Method 8330 "Nitroaromatics and Nitramines by High performance Liquid Chromatography" Revision 2 October 2006, the analyst is referred to: National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268 and Method 3550 Revision 0, December 1996

DCN-218030-117

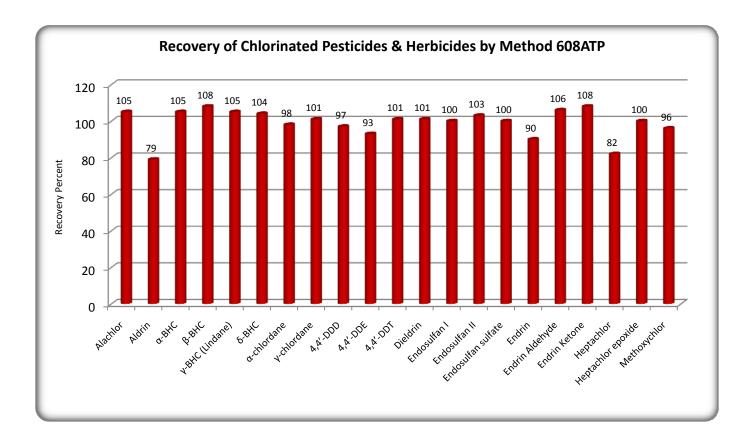
The EPA has accepted the use of C18 bonded phases in packed cartridge format expanding the method from a disk only approach. This method is used in place of liquid-liquid extraction. The UCT ECUNIC18 Universal cartridge has been designed to provide a high level of performance for the solid-phase extraction (SPE) and analysis of certain **organochlorine pesticides and PCB's** in municipal and industrial discharges. With the cartridge's high capture efficiency, fast flow and rapid dry times, laboratory throughput can be significantly improved and sample preparation time reduced.

Product Benefits

- > SPE cartridge containing bonded C18 phase
- > Excellent pH stability under acidic conditions
- > Fast flow rates for rapid analyte capture
- > Works well at all levels of analyte loading
- > Consistent results for excellent reproducibility
- > PTFE frits eliminate potential contamination yielding clean extracts
- > Packaged in metalized bags to maintain product cleanliness

Product Features

- > Cartridges manufactured from clean proprietary polypropylene
- > Each cartridge contains 1100 mg endcapped C18 bonded ultra-clean silica sorbent
- > Can be used on manual single or multi-station vacuum manifold systems
- > Can be used with a variety of automated extraction systems


UCT Products Required:

- 1) Universal Cartridge ECUNIC18
- 2) Florisil PR[®] column cleanup (optional) EUFLS1M6
- 3) NaSO₄ Drying Tube UCT ECSS15M6

Recovery of Method 608ATP Analytes

Analyte	CAS	Amt Spiked µg/L	Average Recovery %	Stdev
Aldrin	309-00-2	0.0999	79	2.08
α-ΒΗϹ	319-84-6	0.1032	105	0.96
β-ВНС	319-85-7	0.1043	108	1.50
γ-BHC (Lindane)	58-89-9	0.1038	105	0.82
δ-ΒΗϹ	319-86-8	0.1040	104	1.26
α-chlordane	5103-71-9	0.0969	98	0.50
γ-chlordane	5103-74-2	0.0969	101	1.71
4,4'-DDD	72-54-8	0.2056	97	2.08
4,4'-DDE	72-55-9	0.2006	93	2.38
4,4'-DDT	50-29-3	0.2014	101	0.96
Dieldrin	60-57-1	0.2046	101	0.82
Endosulfan I	959-98-8	0.1028	100	0.82
Endosulfan II	33213-65-9	0.2054	103	0.96
Endosulfan sulfate	1031-07-8	0.2124	100	2.06
Endrin	72-20-8	0.2016	90	7.33
Endrin Aldehyde	7421-93-4	0.2012	106	9.54
Endrin Ketone	53494-70-5	0.2068	108	1.73
Heptachlor	76-44-8	0.1032	82	5.29
Heptachlor epoxide	1024-57-3	0.1034	100	0.96
Methoxychlor	72-43-5	1.0016	96	1.71

UCT Cartridge ECUNIC18 Shows Excellent Recovery with Laboratory Fortified Blanks (LFB)

An Alternative Test Procedure for the Measurement of Organochlorine Pesticides and Polychlorinated Biphenyls in Waste Water

Method 608ATP

Federal Register Vol. 60, # 148, August 2, 1995

Method Summary*

A 1-liter sample of water is extracted by drawing through a **UCT C18 Universal cartridge ECUNIC18**. The analytes captured on the solid-phase are eluted from the cartridge using a small volume of acetone followed by methylene chloride (MeCl₂). The eluant is dried and exchanged into hexane for analysis by injection into a gas chromatograph with electron capture detection system (GC/ECD) fitted with a highresolution fused silica capillary column.

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

Interferences

- Interferences may generally be attributed to contamination from solvents, glassware or other laboratory equipment leading to anomalous GC peaks. Glassware must be scrupulously cleaned and high purity solvents used.
- Interfering contamination may occur when a sample of low concentration is analyzed immediately after a sample of high concentration. A laboratory blank should be inserted between low and high concentration samples to minimize this potential problem
- Phthalate esters may pose a problem in pesticide analysis when using electron capture detection. This results from contact with common laboratory plastics such as PVC

Sample Collection

- Samples must be collected in glass containers following conventional practices **except** the bottle must not be prerinsed with sample before collection
- Samples must be refrigerated at 4°C from collection to analysis and extracted within 72 hours of collection
- If samples are to be held longer than 72 hours the pH must be adjusted to 5.0-9.0 with sodium hydroxide or sulfuric acid depending upon initial pH

Procedure

1) Condition Cartridge

- a) Insert a cartridge into the glass vacuum manifold or automated extraction system
- b) Wash the cartridge with 10 mL of methylene chloride (MeCl₂). Apply solvent for 1 minute then draw through to waste
- c) Draw air under full vacuum to completely dry cartridge
- d) Add 10 mL of methanol (MeOH) to the cartridge then slowly draw some of it through
- e) Allow the cartridge to soak for 1 minute in methanol
- f) Do not let the cartridge go dry after addition of methanol otherwise repeat the addition of methanol addition step
- g) Rinse the cartridge with 10 mL of reagent water and draw most of it through leaving a thin layer on the top of the sorbent

2) Sample Addition

- a) Adjust sample pH to < 2 using sulfuric acid
- b) Adjust the vacuum and draw the sample water through the cartridge over a 20-30 minute time period
- c) If sample water is high in suspended solids, allow particulates to settle then slowly decant the water in the bottle. Once most of the water passes through the cartridge add the solids portion
- d) Dry the cartridge by drawing air through for about 5-10 minutes

3) Extract Elution

- a) Insert an eluate collection tube into the vacuum manifold
- b) Add 5 mL of acetone to the sample bottle then swirl
- c) Add this to the cartridge
- d) Soak for 1 minute and slowly collect eluate
- e) Add 20 of methylene chloride to the sample bottle, cover and shake. Add this to the cartridge
- f) Soak for 2 minutes and slowly collect eluate
- g) Rinse the inside walls of the sample bottle using 10 mL of methylene chloride then transfer solvent to the cartridge using a disposable pipette rinsing the inside of the cartridge
- h) Soak for 2 minutes then collect eluate

4) Sample Drying

- a) Pour the combined elutes together through a drying tube (UCT ECSS15M6) which contains 5 grams anhydrous sodium sulfate. Alternatively, use 5 grams of sodium sulfate over a bed of glass wool in a funnel
- b) Rinse the drying tube or sodium sulfate bed with 2 x 3 mL portions of 1 methylene chloride
- c) Concentrate sample using a Kuderna-Danish (KD) concentrator while performing solvent exchange into hexane. Other drying techniques may be used
- d) Concentrate sample under a gentle stream of N₂ while gently heating in a water bath
- e) Rinse the inside walls of the concentrator tube two or three times with hexane during the evaporation
- f) Adjust the final volume of the extract to 10 mLs

Florisil PR[®] Clean-up (if needed)

Clean-up procedures may not be needed for relatively clean samples. If required the following procedure is used and is designed to remove polar interferences from organochlorine pesticide and PCB extracts in hexane eluants prior to analysis

UCT EUFLSA1M6 – 1000 mg small particle Grade A Florisil[®] for slower gravity flow

UCT EUFLS1M6 – 1000 mg regular particle PR Grade Florisil® for more viscous samples

1) Procedure

- a) Place a cartridge in a vacuum manifold
- b) Prerinse the Florisil[®] column with 10 mL of 90:10 hexane/acetone using gravity flow (A low vacuum may be necessary to start flow)
- c) Discard solvent
- d) Add a collection tube under the column
- e) Add a 2 mL aliquot of the sample extract (in hexane) to the column
- f) Collect extract by gravity
- g) Add 10 mL of 90:10 hexane/acetone to the column
- h) Continue to collect by gravity or low vacuum
- i) Gently evaporate the extract to a volume of 1 mL
- j) Adjust eluate to a final volume of 2 mL with hexane
- k) Sample is now ready for analysis

Sulfur Clean-up (if needed)

UCT ECCU01K - 1 kG copper granules

1) Procedure

a) Post Sample Extraction

- a) Place 4 grams of copper bead in a glass vial
- b) Add 2 mL of liquid sample extract to the vial

b) Sulfur Removal

- a) Seal the glass vial and mix sample with copper beads for 2 minutes
- b) Allow to stand for approximately 10 minutes
- c) If sample contains high levels of sulfur, repeat process with 4grams of fresh copper beads

Note: For the analysis of PCB type analytes, copper may reside in the extract

c) Analysis, GC/MS or LC/MS

- a) Transfer clean extract to autosample vial
- b) Inject 1-2 µL for GC
- c) Inject 5-10 µL for LC
- d) Sample is now ready for 6081tp analysis

Sample Analysis by 608ATP

5) Analysis

- a) Inject a 1-2 µL aliquot into a GC
- b) Identify the analytes in the sample by comparison of the retention time to known reference chromatograms

*For complete details on Method 607ATP, the analyst is referred to: "An alternative test procedure for the measurement of organochlorine pesticides and polychlorinated biphenyls in waste water", Federal register/Vol.60, No.148, August 2, 1995, Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268

Florisil[®] is a registered trademark of U.S. Silica

DCN-905280-171

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

Extraction of Metals

Part #: EUTAX15Z February 3, 2009

Metals: Tin, Nickel, Mercury, Copper, Chromium, Ruthenium

Matrix: Water, Blood, Biological Fluids, Organic Solvents & Tissue Homogenates

1) Sample Pre-treatment

The primary concern using ion exchangers is to adjust the pH of the compound of interest so that it is totally ionized. Adjust the sample to pH 7 with buffer or ammonium hydroxide.

Aqueous or Organic Solvent Samples:

Adjust sample to pH 7.0 with 100 mM dibasic sodium phosphate buffer and vortex.

Whole Blood, Serum or Plasma:

To 1 ml of sample add 4 ml of D.I. H20 and vortex. Let stand 5 minutes and centrifuge for 10 minutes at 2000 rpm and discard pellet. Adjust to pH 9.0 with 100 mM dibasic sodium phosphate buffer or ammonium hydroxide.

2) Column Conditioning

Add 3 ml of methanol followed by Add 3 ml of water. Add 3 ml of buffer pH 7.0

3) Sample Application

Apply the sample to the column at a rate of 1 ml per minute. A faster rate of application may exceed the rate of ion-exchange.

4) Analyte Purification

Wash the column with 2 ml of pH 7.0 buffer used in column equilibration.

5) Elution

Elute with 3 ml of acidic methanol (2% HCl, pH 2.0).

Alternative elutions:

Elute with 3 ml of acidic methanol (Formic acid to pH 2.0). Elute with 3 ml of 0.1 M Nitric Acid (pH 2.0).

DCN-903020-119

Ion Exchange Sorbents for Metals Extraction-Analysis & Sorbent Use Selection Guide

UCT ENVIRO-CLEAN[®] (Ion-Exchange Cartridges)* January 5, 2010

The determination of trace metals in aqueous environmental samples or other matrices often require sample pretreatment and cleanup procedures prior to analysis by using specific ion-exchange sorbents. The sorbents are used to eliminate matrix interferences and achieve high concentrations of metal ions for good analytical accuracy. They are important when using such techniques as AA, IES and ICP-AES.

The use of ion-exchange sorbents for the preconcentration, separation and determination of metal ions for trace analysis is well established in the literature. Selection of an appropriate sorbent ensures both high efficiency in metal chelating while minimizing the mass of sorbent required for a particular analytical task. A high efficiency sorbent means that a smaller bed mass may be used thereby reducing the quantity of solvent required for elution yielding greater analytical sensitivity.

Recommendations in this application note include the following metal ions:

Zinc (II)	Arsenic (V)	Tin (IV)	Selenous IV)
Mercury (II)	Chromium (III)	Copper (II)	Platinum (0)

Other metal ions may be extracted by the use of these ion-exchange sorbents

Sorbent Selection for Metals Extraction

Solid-phase sorbents have differing capacity and selectivity for various metal ions due to the specific nature of the ion-exchange functional group, the metal species and the valence state of the metal of interest. Depending on the specific metal ion of interest, elution of the cartridge may be most efficient using both the acid followed by the base elution procedure. This can be determined by looking at the following Extraction Protocol Tables. For example, when eluting Hg(II) from PSA the highest recovery is obtained using acid elution (green box) followed by base elution (yellow box).

Sample Analysis

1) Sample Extraction

- a) Assemble an all glass extraction apparatus
- b) Place a UCT ENVIRO-CLEAN[®] cartridge on the apparatus

Note: Cartridge selection will depend on the volume of sample or the concentration of metal to be extracted

- c) Condition 1mL cartridge by adding 3 mL of methanol. (Larger cartridges will require a larger volume of solvent and water wash volume in steps c) and d))
- d) Add 3 mL of reagent water and allow to drip through the cartridge

Note: Do not allow the cartridge to dry out after addition of water, otherwise repeat step d)

Add 10-50 mL of sample water to the cartridge. A larger sample volume may be used depending on metal concentration or suspended solids content

- e) Adjust vacuum setting so that the water flows at 1-3 mL/minute until sample has passed completely through the cartridge
- f) Allow the cartridge to air dry for about 1 minute under full vacuum

2) Elution--Acid

- a) Prepare a 100 mM nitric acid elution solution
- b) Place a collection vial in the vacuum manifold
- c) Add 3 mL of the nitric acid solution to the cartridge
- d) Adjust flow rate for a flow of 1-3 mL/minute
- e) Dilute eluant to an appropriate volume for detection using reagent water
- f) Sample is ready for analysis

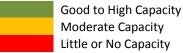
3) Elution--Base

- a) Prepare a 100 mM triethylamine elution solution
- b) Place a collection vial in the vacuum manifold
- a) Add 3 mL of the triethylamine solution to the cartridge
- b) Adjust flow rate for a flow of 1-3 mL/minute
- c) Dilute eluant to an appropriate volume for detection using reagent water
- d) Sample is ready for analysis

4) Analysis

a) Prepare calibration curves for use with atomic absorption (AA) or Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) using appropriate metals standards

Extraction Protocol Tables


How to use these tables: When choosing an ion-exchange sorbent to capture arsenic (V) for example, all ion-exchange sorbents will capture a small quantity of metal ions, however, only a base extraction would elute metal ions from these sorbents. For extraction of zinc ions, all sorbents would have moderate to high capacity but elution could only occur from the sorbent using acidic elution conditions.

Acid Extraction Protocol

Sorbent	Cu (II)	Zn (II)	As (V)	Sn (IV)	Se (IV)	Hg (II)	Cr (III)	Pt (0)
PSA								
BCX-HL								
CCX								
ТАХ								
ТНХ								
NAX								

Base Extraction Protocol

Sorbent	Cu (II)	Zn (II)	As (V)	Sn (IV)	Se (IV)	Hg (II)	Cr (III)	Pt (0)
PSA								
BCX-HL								
CCX								
ТАХ								
ТНХ								
NAX								

Moderate Capacity Little or No Capacity

Ion-Exchange Sorbent Key

PSA	Primary secondary amine			
BCX-HL	Benzene sulfonic acid –high load			
ССХ	Carboxylic acid			
ТАХ	Triacetic acid			
тнх	Sulfhydryl (thiopropyl)			
NAX	Aminopropyl			

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

Primary Secondary Amine (PSA)

The PSA ion-exchange sorbent has a significant capacity for Hg(II) Se(IV) followed by a lesser capacity for Sn(IV), Cu(II), Zn(II) and Cr(III). Metal ions are readily eluted from PSA by the use of weak acid solutions such as 100mM nitric acid solution. Additional recovery for selenium can be obtained by following the acid elution by the use of 100 mM triethylamine solution

Benzenesulfonic Acid-High Load (BCX-HL)

The BCX-HL ion-exchange sorbent is the least selective of all ion-exchange sorbents and has significant capacity for Hg(II) and Sn(IV) thus ensuring high extraction efficiency for trace analysis. It is also a strong sorbent for Cu(II), Zn(II), Cr(III) and small amounts of Pt. In most cases, metal ions are readily eluted from BCX-HL by the use of 100mM nitric acid solution. Improvement in Hg(II) recovery yield and Sn(IV) can be achieved when eluting with 100 mM triethylamine solution.

Carboxylic Acid (CCX)

The CCX sorbents have high selectivity for Sn(IV) and Hg(II). Metal ions are readily eluted from CCX by the use of weak acid solutions such as 100mM nitric acid solution. Sn(IV) is eluted using 100 mM triethylamine solution. Additional Hg(II) is released under basic elution.

Triacetic Acid (TAX)

TAX sorbents have the highest affinity for Sn(IV) and Hg(II) followed by lesser amounts of Cu(II) and Zn(II). Metal ions are readily eluted from TAX by the use of weak acid solutions such as 100 mM nitric acid solution. Sn(IV) is eluted using 100 mM triethylamine solution. Additional Hg(II) is released under basic elution.

Sulfhydryl THX (thiopropyl)

THX sorbents have the highest affinity for Hg(II) and Sn(IV), and approximately equal weights of Sn(IV) and Cu(II). Metal ions are readily eluted from THX by the use of weak acid solutions such as 100mM nitric acid solution. Sn(IV), Se(IV) and Hg(II) are eluted using 100 mM triethylamine solution.

Aminopropyl (NAX)

The NAX ion-exchange sorbent has a significant capacity for Hg(II) followed by Se(IV). Metal ions are readily eluted from NAX by the use of weak acid solutions such as 100mM nitric acid solution. Additional Hg(II) is released under basic elution.

For further data and specific information and discussion of each sorbent see separate UCT publications: **Topics in Solid-Phase Extraction: Metals Analysis.**

*UCT ENVIRO-CLEAN[®] Ion-exchange cartridges are available in a variety of cartridge sizes, sorbent mass and particle size to most analytical requirements. For further information, contact UCT.

DCN-105001-181

Agricultural

www.unitedchem.com

Pesticides in Fatty Matrices Extraction

UCT Products: ECPSAC1856 (500 mg endcapped C18 and 500 PSA in 6 mL cartridge) CUMPSC18CT (150 mg MgSO₄, 50 mg PSA and 50 mg C18 in a 2 mL centrifuge tube) ECMAG00D (500 g organic free Mg SO₄ anhydrous) ECNACL05K (5 kg NaCl) January 20, 2011

1) Sample Preparation

- a) Weigh 20.0 ± 0.10 grams (g) of homogenized sample into a 250 mL plastic centrifuge bottle, tared on a balance capable of weighing to 0.01 grams
- b) Fortify each sample with process control spiking (PCS) solution
- c) Add 50 mLs of ethyl acetate (EtAc) to each tube
- d) Fortify each sample with internal standard (ISTD) spiking solution
- e) Reduce sample material particle size by using a high speed disperser for approximately 1 minute
- f) Add 2 g of anhydrous MgSO₄ (ECMAG00D) and 0.5 g anhydrous NaCl (ECNACL05K).

Note: Carefully add the reagents to the tube to avoid contaminating the threads or rims of the tubes otherwise leaks may result

- g) Seal the tube and shake vigorously for approximately 1 minute either mechanically or by hand. Make sure the solvent interacts well with the entire sample and that crystalline agglomerates are broken up
- h) Cool the sample in a -20 °C freezer for approximately 30 minutes
- i) Centrifuge at 10,000 RCF for 5 minutes
- j) Decant at least 50 mL of the EtAc layer into a 50 mL glass graduated centrifuge tube using a funnel and filter paper. Allow the extract to come to room temperature and adjust the volume with EtAc to 50 mL using a Pasteur pipette
- k) Concentrate the extract under a stream of nitrogen with a 70° C water bath until the volume remains constant (this will be ~ 3 mLs and will take about 1 hour)

- Dilute to 20 mLs with acetonitrile (MeCN) and cap with a glass stopper, vortex for 1 minute
- m) Freeze at -70 °C for 30 minutes
- n) Centrifuge the extract while frozen for 3 minutes (The MeCN will thaw during centrifugation)
- Directly after centrifugation in step n), filter > 15 mLs of the MeCN layer of the extract with a 0.45 μm syringe filter into a 15 mL glass centrifuge tube
- p) Allow the extract to come to room temp, adjust the volume to 15 mL, and concentrate to 2.25 mL under a stream of nitrogen with a 70 °C water bath

2) LC-MS/MS Analysis

- a) Transfer 1 mL of extract to a 2 mL mini-centrifuge tube CUMPSC18CT
- b) Vortex for 1 minute and centrifuge
- c) Transfer to auto sampler vial. Sample is now ready for analysis

3) GC Analysis

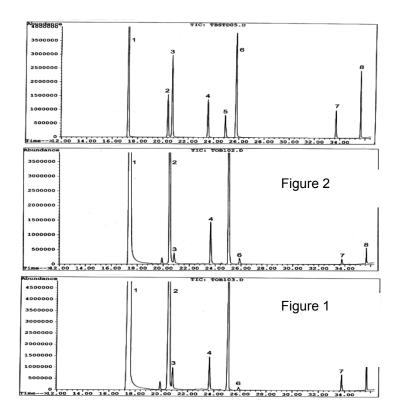
- a) For GC analyses, use the dual layer cartridge **ECPSAC1856**
- b) Add approximately 0.75 0.80 grams (~ 0.6 cm = 0.25 inches) of anhydrous MgSO₄ added to the top of the cartridge
- c) Condition the SPE cartridge by adding one cartridge volume (4.0 mLs) of MeCN using a UCT positive pressure SPE manifold
- d) Elute to waste
- e) Place a labeled 15 mL graduated disposable plastic centrifuge tube below the cartridge in the positive pressure SPE manifold
- f) Quantitatively transfer 1 mL of the sample extract from step 15 to the SPE cartridge
- g) Elute SPE cartridge in a drop wise manner (Regulated Flow Pressure = 35 psi) into a labeled 15 mL graduated glass centrifuge tube using MeCN

- h) Collect the eluate while washing the SPE cartridge <u>three times</u> with <u>4 mLs of eluant</u>.
 Do not allow the cartridge to go dry until step 24
- After the last 4 mL portion of eluant has passed through the cartridge move the switch of the positive pressure SPE manifold from "Regulated Flow" to "Full Flow/Dry" to dry the SPE cartridge for approximately 1 minute
- j) Using an N-Evap (or equivalent) with the water bath set at 50°C and N₂ flow set at <10 liters per minute (LPM) (typical setting is 2 – 6 LPM), evaporate the sample to approximately 0.5 mL
- k) Add 3 mL of toluene to the centrifuge tube containing the sample
- I) Evaporate again to < 0.5 mL. (This is to insure all other solvents have been removed from the sample.)
- m) Bring the volume to 1.0 mL with toluene and vortex to mix solvent into sample
- n) Analyze by GCMS-EI and GCMS-NCI

DCN-110210-126

Analysis of Tobacco Alkaloids

Part #: EUBCX1H2Z February 3, 2009


A strong cation exchange column (benzene sulfonic acid) is used to capture tobacco alkaloids which have been ionized by the use of acid. Non-polar and other extraneous compounds are removed from the extract yielding cleaner chromatograms without loss of target alkaloids.

Sample Preparation

- Weigh 100 mg of fine ground tobacco in a screw cap vial, add 6 mL 0.1M sodium acetate buffer (pH 4.5) and 100 μL internal standard (d4-nornicotine, 1 μg/μL).
- Mix on rotating shaker for 10 minutes, then filter extract through 20 micron frit filter column.
- Add 300 µL glacial acetic acid and mix.
- Condition SPE column, UCT Part #: EUBCX1H2Z (200 mg benzene sulfonic acid sorbent) with 3 mL of MeOH:1.0M acetic acid (80:20).
- Pour sample onto column, aspirate for 1-2 mL/min by vacuum.
- Wash column with 3 mL of MeOH: 1.0M acetic acid (80:20).
- Dry column for 5-10 min with full vacuum.
- Elute alkaloids with 3 mL CH₂Cl₂/isopropanol/NH₄OH (70:26:4) by gravity.
- Evaporate eluant to dryness with nitrogen and low heat (< 40° C).
- Reconstitute with 200 µL ethyl acetate.
- Analyze on GC/FID/NPD or GC/MSD.

Alkaloid	Pka	Flue Cured Tobacco	Burkey Lamina Tobacco
	n=15/mean	mg/gram/CV	mg/gram/CV
Mysomine	NA	48/6.2	189/7.9
Nicotine	7.94	39406/6.2	39119/8.8
Nornicotine	9.46	1381/3.5	5429/5.2
Anatasine	9.20	229/5.2	183/8.7
Anatabine	8.23	1932/2.3	1774/2.3
2,3'-dipyridyl	4.25	54/8.9	30/11.2
Cotinine	4.88	20/11.2	52/12.4
Formylnornicotine	NA	31/11.9	145/12.4

Results:

Sample Chromatogram

(1) nicotine, (2) nornicotine, (3) myosmine, (4) anabasine,(5) anatabine,
 (6) 2,3'-dipyridyl, (7) cotinine, (8) formylnornicotine

Instrument:	Agilent 5890GC/5971MSD
GC column:	Rtx-5 Amine, 30 m x 0.25 mm i.d. x 1.0 µm film
Injector:	1 μL sample at 10:1 split, 250° C
Temp program:	Initial 120° C, hold 1 min, ramp 2.5° C/min to 200° C,
	ramp 20° C/min to 280° C, hold 1 min.
MSD conditions:	SIM monitoring, EI mode, 295° C

DCN-903020-60

Analysis of Glyphosate and Glufosinate by Solid-Phase Anion Exchange Extraction with GC/MS or LC/MS Analysis

UCT Product: EUQAX2M6 (1000 mg, QAX2, 6 mL cartridge)

September 30, 2009

Analyte	CASRN	Common Name
Glyphosate ¹	1071-83-6	Roundup®,
Glyfosinate ²	51276-47-2	Basta®, Challenge®)

1) Sample Preparation

a) Adjust water sample pH to 6 or higher with buffer

2) Cartridge Conditioning

- a) Place EUQAX2M6 cartridges(s) on manifold
- b) Add 5 mL of methanol to the cartridge
- c) Slowly draw methanol through leaving enough to cover cartridge frit
- d) Rinse using 10 mL of pH 6 or higher buffer leaving a layer of buffer on frit

Note: Do not let the cartridge dry out after addition of methanol otherwise repeat

3) Extraction Protocol

a) Draw a known volume of sample water through the cartridge, usually 100-500 mL

Note: Sample volume is determined by the analytical quantitation limit

- a) Adjust vacuum so that flow is approximately 1 3 mL per minute
- b) Wash sorbent using 10 ml of pH 6 buffer
- c) Dry the cartridge by drawing full vacuum for 10 minutes

4) Analyte Elution

- a) Elute using 5 mL of 1 mol/L HCl/methanol solution (4/1)
- b) Add eluant to the cartridge then draw through at 1 mL/minute
- c) Evaporate to dryness with N_2 flow in a water bath heated to 50 °C

5) GC Analysis

- Add 50 μL of MTBSTFA (N-methyl-N-(tert-butyldimethylsilyl) triflouroacetamide) and
 50 μL of dimethylformamide for derivatization
- b) Sonicate at room temperature for 2 minutes (critical)
- c) Quantitatively transfer to GC vial and cap
- d) Heat to 80° C for a minimum of 30 minutes
- e) Cool to room temperature
- f) Sample is ready for analysis

6) LC Analysis (Alternative Analysis Procedure—no derivatization needed)

- a) After step 4) c) dissolve the dry residue using 100 μ L of methanol
- b) Quantitatively transfer to an LC vial then cap
- c) Sample is ready for LC analysis

¹N-phosphonomethyl glycine

²RS-2-amino-4-(hydroxyl-methyl-phosphoryl)butanoic acid

DCN-218030-118

Extraction of Phenoxyacetic Acid Herbicides From Soil By LC-MS/MS

Part #: EEC181M6 / ECUNIC18 April 20, 2009

1. Sample Pretreatment

- a) Prepare an acid washed beaker*
- b) Add 10-100 grams of soil sample
- c) Add enough DI H₂O to form a loose slurry
- d) Insert a magnetic stir bar and extract for 15 minutes
- e) Adjust pH to 2 using 50% aqueous sulfuric acid (H₂SO₄)
- f) Continue extraction for 15 minutes adjusting pH as needed
- g) Filter sample through previously acidified filter media

Note: Acid washed glassware must be used in this procedure. Soda lime glassware must be avoided as it may interfere with the analysis

2. Condition C18 SPE Cartridge

- a) Add 5 mL CH₃OH and wait 1 minute
- b) Add 5 mL DI H₂O

Note: Aspirate at low vacuum setting. Do not let cartridge dry out otherwise repeat steps a) and b)

3. Add Sample

a) Adjust vacuum and load cartridge at 10 mL/minute flow rate

4. Dry Cartridge

b) Dry cartridge for 10 minutes at full vacuum

5. Elute Phenoxyacetic acid Herbicides

- a) Place a clean collection vial in manifold
- b) Add 5 mL of CH₃OH and wait 1 minute
- c) Add a second 5 mL volume of CH₃OH
- d) Adjust vacuum and collect at 1-2 mL/ minute

6. Dry Eluate

- a) Evaporate to dryness at < 40° C using N₂
- b) Reconstitute in 100 μ L of mobile phase for LC-MS/MS
 - Inject 10-100 μL

HPLC Analysis and Instrumentation Requirements

Guard Column: C18 10mm x 2.6mm with 0.5 µm frit

Analytical Column:

- C18 100 mm x 2 mm 5 µm particle ODS-Hypersil
- C18 100 mm x 2 mm 3 µm particle MOS2-Hypersil or equivalent

HPLC/MS Interface:

 Micromixer 10-µL interface HPLC column system with HPLC post-column addition solvent

Interface:

• Thermospray ionization interface and source capable of generating both positive and negative ions and have a discharge electrode or filament

Mass Spectrometer System:

- A single quadrupole mass spectrometer capable of scanning from 1 to 1000 amu
- Scanning from 150 to 450 amu in 1.5 sec. or less using 70 volts (nominal) in positive or negative electron modes
- Capable of producing a calibrated mass spectrum for polyethylene glycol (PEG 400, 600, or 800, average mol. wts.) or other compounds used as a calibrant
- Use PEG 400 for analysis of chlorinated phenoxyacid compounds. PEG is introduced via the Thermospray interface circumventing the HPLC

Thermospray Temperatures:

Vaporizer Control: 110°C to 130°C Vaporizer Tip: 200°C to 215°C Jet: 210°C to 220°C Source Block: 230°C to 265°C

Recommended HPLC Chromatographic Conditions

Chlorinated Phenoxyacid Compounds

Initial Mobile Phase %	Initial Time minutes	Final minutes	Final Mobile Phase %	Time minutes
75A/25	2	15	40/60	
40A/60	3	5	75/25	10

A=0.1 M ammonium acetate/methanol

Limits of Detection in the Positive and Negative Ion Modes for HPLC Analysis of Chlorinated Phenoxyacid Herbicides and Esters

Compound	Positive Ion Mode Quantitation LOD		Negative Ion Mode Quantitation LO	
	lon	ng	lon	ng
Dalapon	Not detected		141 (M ⁻ H) ⁻	11
Dicamba	238 (M ⁺ NH ₄) ⁺	13	184 (M⁻HCI)⁻	3.0
2,4-D	238 (M ⁺ NH ₄) ⁺	2.9	184 (M⁻HCI)⁻	50
МСРА	218 (M ⁺ NH ₄) ⁺	120	199 (M⁻1)⁻	28
Dichloroprop	252 (M ⁺ NH ₄) ⁺	2.7	235 (M⁻1)⁻	25
МСРР	232 (M ⁺ NH ₄) ⁺	5.0	213 (M⁻1)⁻	12
2,4,5- T	272 (M ⁺ NH ₄) ⁺	170	218 (M ⁻ HCI) ⁻	6.5
2,4,5-TP Silvex	286 (M ⁺ NH ₄) ⁺	160	269 (M ⁻ 1) ⁻	43
Dinoseb	228 (M⁺NH₄⁻NO)⁺	24	240 (M-)	19
2,4-DB	266 (M ⁺ NH ₄) ⁺	3.4	247 (M-1)-	110
2,4,5-D, butoxy ethanol ester	321 (M⁺H)⁺	1.4	185 (M ⁻ C ₆ H ₁₃ O ₁) ⁻	
2,4,5-T,butoxy ethanol ester	372 (M ⁺ NH ₄) ⁺	0.6	195 (M ⁻ C ₈ H ₁₅ O ₃) ⁻	
2,4,5-T, butyl ester	328 (M ⁺ NH ₄) ⁺	8.6	195 (M ⁻ C ₆ H ₁₁ O ₂) ⁻	
2,4-D, ethyl hexyl ester	350 (M⁺NH₄)⁺	1.2	161 (M ⁻ C ₁₀ H ₁₉ O ₃) ⁻	

DCN-900240-146

Analysis of Brodificoum, Diphacinone, and Hydramethylnon Pesticides in Soil Using C18 SPE

Part #: ECUNI525 April 8, 2009

1. Sample Preparation

- a) Weigh 1-5 grams of sample in a clean beaker
- b) Add 1-2 volumes of 5% methanol/water
- c) Stir for 15 minutes on a magnetic stir plate
- d) Adjust sample pH to 2 using 50% aqueous sulfuric acid (H_2SO_4)
- e) Continue extraction for a additional 15 minutes
- f) Adjust pH if necessary to maintain pH 2
- g) Filter or centrifuge sample
- h) Decant supernatant or collect filtrate
- i) Add appropriate internal standards and surrogates

2. Condition Cartridge

Add 10 mL methanol and wet sorbent Add 20 mL DI water and draw through cartridge to remove methanol

Note: Do not allow the cartridge to dry out otherwise repeat steps a) and b)

3. Extract Sample

Draw sample through cartridge at 10 mL/ minute.

4. Dry Cartridge

Dry cartridge for 10 minutes at full vacuum

5. Elute Brodificoum, Daphacinone, and Hydramethylnon

Add 10 mL of ethyl acetate to sample bottle and shake Add to cartridge Adjust vacuum and collect eluate at 1-2 mL/ minute flowrate Add 10 mL of methylene chloride (CH₂Cl₂) to sample bottle Add to cartridge Collect eluate at 1-2 mL/ minute flowrate Pass combined organic phases through anhydrous sodium sulfate tube

6. Dry Eluate

Using N₂, evaporate sample to less than 0.5 mL Bring to 1.0 mL with ethyl acetate in a volumetric flask

7. Analyze Sample

Inject 1-2 µL onto GC, GC/MS

DCN-900840-149

Extraction of Bentazone and Acifluorfen from Solid Matrices Using C₁₈ SPE with GC/MS Analysis

Part #: ECUNIC18 or EEC181M6 April 8, 2009

1. Sample Pretreatment

Homogenize 5-10 grams of solid sample using 3-4 volumes of 5% aqueous methanol (CH₃OH) Centrifuge sample Transfer supernatant to appropriate sized sample bottles **Note: Adjust methanol to pH 2 using 0.1N HCI**

2. Condition C₁₈ Cartridge

Add 5 mL CH_3OH Add 15 mL DI H_2O adjusted to pH2 using 0.1N HCl Note: Do not let the cartridge dry out otherwise repeat steps a) and b)

3. Extract Sample

Adjust vacuum and draw water sample at 25 mL/ minute

4. Dry C₁₈ SPE

Dry column for 10 minutes at full vacuum

5. Elute Bentazone/ Acifluorfen

- a) Prepare a clean test tube by adding 2g of acidified sodium sulfate*
- b) Add 10 mL of ethyl acetate to sample bottle and shake
- c) Add to C_{18} cartridge
- d) Soak for 1 minute
- e) Adjust vacuum and collect eluate in the tube containing sodium sulfate
- f) Add 10 mL of methylene chloride (CH_2CI_2) to the sample bottle and swirl
- g) Add to C₁₈ column
- h) Soak for 1 minute and collect
- i) Repeat using another 10 mL of aliquot of CH₂Cl₂
- j) Adjust vacuum and collect at 1-2 mL/ minute

6. Dry Eluate

Pass extract through 10 g of acidified sodium sulfate Collect sample in a clean vial (Do not use soda lime glass) Add appropriate internal standard

7. Evaporate

Concentrate to desired final volume

8. Derivatize sample

Use trimethylsilyldiazomethane (TMSD) by EPA Method 515 or diazomethane by EPA Method 8151.

Note: The extract must be completely dry or incomplete methylation will occur.

9. Analysis

Inject 1-2 µL onto a GC/MS

*See <u>Procedure for Preparing Acidified Sodium Sulfate Anhydrous</u>, UCT, Inc., Revision 1.1, EPA Method 8151A, 5.10

DCN-900840-154

QuEChERS Extraction and Clean-Up of Pesticides from Olive Oil Part #: CUMPS2CT (150 mg anhydrous MgSO₄ & 50 mg PSA)

Part #: CUMPS2CT (150 mg anhydrous MgSO₄ & 50 mg PSA) April 8, 2009

1. Sample Extraction

- a) In a suitable vial, add 1.5mL of olive oil
- b) Add 1.5 mL of hexane
- c) Add 6 mL of acetonitrile
- d) Shake for 30 minutes
- e) Allow layers to phase separate for 20 minutes
- f) Collect acetonitrile layer (top layer)
- g) Repeat steps c) through f) and combine acetonitrile layers

2. Sample Clean-up

- a) Add 1 ml of combined acetonitrile to UCT product CUMPS2CT
- b) Shake for 2 minutes by hand
- c) Centrifuge at 3000 rpm for 2 minutes
- d) Remove solvent layer
- e) Analyze by HPLC using MS detection

DCN-900840-157

QuEChERS Multiresidue Pesticide Method for The Determination of Multiple Pesticides in Wines*

Part Number:

ECQUVIN50CT (50 mL centrifuge tube, 8.0 grams anhydrous MgSO₄ & 2 grams NaCl) **ECMPSCB15CT** (900 mg anhydrous MgSO₄, 300 mg PSA &150 mg GCB) February 11, 2010

This method summary describes a multi-residue pesticide method for the determination of 72 pesticides in wines. Pesticides are extracted using acetonitrile saturated with magnesium sulfate and sodium chloride followed by a dispersive solid-phase cleanup with primary-secondary amine (PSA) and graphitized carbon black (GCB) sorbents.

Analysis is performed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) in ESI (positive) mode.

1. Sample Preparation

- a) Add 20 mL acetonitrile (ACN) and *internal standard* 250 uL Fluconazole (10 μg/L) to **ECQUVIN50CT**
- b) Quantitatively add 20.0 mL of wine
- c) Shake for approximately 2 minutes
- d) Centrifuge at 4500 rpm for 5 minutes (use refrigerated centrifuge if available)
- e) Transfer 9.0 mL of top layer and add to ECMPSCB15CT (900 mg anhydrous MgSO₄, 300 mg PSA &150 mg GCB)
- f) Vortex tube for approximately 10 seconds
- g) Open tube and add 3.0 mL of toluene and shake for 1 minute
- h) Centrifuge the tube for 5 minutes @ 4500 rpm
- i) Quantitatively transfer 2.0 mL of supernatant to a glass centrifuge tube
- j) Evaporate to dryness at < 40 °C using N₂
- k) Add 500 μL of ACN and 25 μL of *surrogate standard* (benzanilide 20.0 μg/L) for QC and 500 μL of 20 mM ammonium acetate in 1% ACN to the dried extract
- Vortex for approximately 5 seconds and filter into autosampler vial using 17mm, 0.2 μm nylon membrane cartridges attached to a disposable syringe

2. UPLC/MS/MS Analysis

UPLC Conditions:

Column: Water's Acquity UPLC BEH C₁₈ column 100 x 2.1 mm, 1.7 μ m particle or equivalent

Flowrate: 0.2 mL/minute

Injection volume: 3 μL

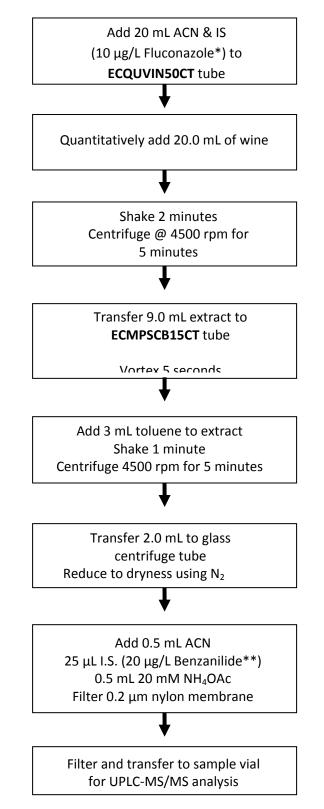
Analytical Standards: Matrix Matched

Gradient Program:

Time	% Acetonitrile	% 10mM Ammonium Acetate
0	10	90
10	90	10
14.5	90	10
14.6	10	90
20.1	10	90

Triple Quadrupole MS Conditions--electrospray ionization mode (ESI+)

Capillary Voltage: 1.5 kV Source Temperature: 120 °C N_2 Flow: cone 50 L/h, desolvation 800 L/h Collision Gas: Argon Dwell Time: 10 µS for multiple reaction monitoring (MRM) experiments Collision Cell Pressure: 5.9 x 10⁻³ mbar


Summary of MS/MS Conditions

Pesticide	Molecular Weight	CV (V)	Quantification Transition
Acephate	183.17	20	184.0→143.0
Acetamiprid	222.67	30	223.4→126.1
Acibenzolar S-methyl	210.27	35	211.1→136.0
Aldicarb	190.27	12	208.1→116.0
Aldicarb sulfone	222.27	15	240.0→222.9
Aldicarb sulfoxide	206.26	15	224.2→206.9
Atrazine	215.69	35	215.9→173.85
Avermectin B _{1b}	873.09	20	876.6→553.4
Avermectin B _{1a}	873.09	20	890.7→567.5
Azoxystrobin	403.30	25	404.0→372.1
Benalaxyl	325.41	26	326.1→148.1
Benfuracarb	410.53	20	411.2→190.0
Benzanilide	197.24	30	198.1→105.1
Bifenazate	300.35	20	301.3→170.2
Bitertanol	337.42	20	338.2→ 99.1
Buprofezin	305.44	25	306.3→201.2
Carbaryl	201.22	22	202.1→145.1
Carbendazim	191.19	30	192.0→160.0
Carbofuran	221.26	26	222.1→123.1
Chloroxuron	290.75	35	291.0→ 72.2
Cyprodinil	225.29	45	226.1→ 93.0
Cyromazine	166.19	25	167.2→ 85.1
Diclobutrazol	328.24	30	328.1→70.2
Dimethoate	229.26	20	230.1→199.0
Dimethomorph	387.86	35	388.0→301.1
Dimoxystrobin	326.39	20	327.1→206
Dinotefuran	202.20	20	203.5→14.0
Diuron	233.10	30	233.0→72.1
Ethofumesate	286.35	30	286.9→258.9
Famoxadone	374.39	-32	373.2→ 282
Fenamidone	311.40	25	312.2→236.2
Fenbuconazole	336.82	35	337.1→125.0
Fenhexamid	302.20	65	301.9→261.9
Fenpropimorph	304.49	40	304.4→147.1
Fluconazole	306.27	30	307.2→220
Fludioxinil	248.19	-45	247.0→180.0
Furathiocarb	382.48	30	383.2→195.1
Hexaconazole	314.21	35	314.0→ 70.2
Imazalil	297.18	35	297.1→159.0
Imidacloprid	255.65	25	256.1→175.0
Ipconazole	333.86	35	334.1→70.2
Iprovalicarb	320.43	24	321.2→119.0
Kresoxim-methyl	313.35	20	314.1→116.0
Mepanipyrim	223.28	30	224.4→ 77.3

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

Metalaxyl	279.34	25	280.1→220.1
Methamidophos	141.13	22	142.0→ 94.0
Methomyl	162.21	20	163.0→ 88.0
Methoxyfenozide	368.47	15	369.5→149.0
Mevinphos	224.15	22	225.1→192.8
Myclobutanil	288.78	35	289.1→ 70.2
Omethoate	213.14	20	214.1→183.0
Oxadixyl	278.31	20	279.1→219.1
Piperonyl butoxide	338.45	17	356.2→177.0
Prochloraz	376.67	20	376.1→308.0
Propamocarb	188.27	30	189.1→102.1
Propargite	350.48	20	368.1→231.0
Propiconazole	342.22	35	342.0→159.0
Propoxur	209.24	20	210.0→111.0
Pyraclostrobin	387.83	23	388.0→194.0
Pyridaben	364.94	22	365.3→309.1
Pyrimethanil	199.25	40	200.1→107.0
Quinoxyfen	308.14	50	307.8→196.8
Rotenone	394.42	40	395.3→213.2
Simazine	201.66	30	202.2→131.4
Spinosyn A	731.97	40	732.6→142.2
Spinosyn D	746.00	30	746.6→142.2
Spiroxamine	297.48	30	298.2→144.0
Tebuconazole	307.82	30	308.2→ 70.2
Thiabendazole	201.25	35	202.0→175.0
Triadmimefon	293.75	30	294.0→197.1
Trifloxystrobin	408.38	25	409.0→186.0
Triflumizole	345.75	20	346.0→278.1
Vamidothion	287.34	20	288.1→146.0
Zoxamide	336.54	35	336.0→187.0

Schematic Diagram of Sample Preparation Steps

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

Table of Average Pesticide Recoveries at 100 g/L Spike (average values with SD, n=4)

	Pesticide Recovery	
	Red Wine @ 100 μg/L	White Wine @ 100 μg/L
Acephate	84±4	79±3
Acetamiprid	83±8	97±7
Acibenzolar S-methyl	80±15	45±5
Aldicarb	92±5	82±5
Aldicarb sulfone	91±7	83±4
Aldicarb sulfoxide	83±8	80±1
Atrazine	92±5	83±5
Avermectin B 1b	94±12	107±13
Avermectin B _{1a}	82±8	80±6
Azoxystrobin	93±5	86±4
Benalaxyl	92±5	84±4
Benfuracarb	ND	ND
Benzanilide	69±7	70±8
Bifenazate	86±4	86±11
Bitertanol	92±5	86±4
Buprofezin	91±4	88±6
Carbaryl	77±4	76±4
Carbendazim	126±7	106±7
Carbofuran	90±4	86±4
Chloroxuron	75±5	72±2
Cyprodinil	38±2	56±5
Cyromazine	89±6	83±5
Diclobutrazol	89±6	82±4
Dimethoate	88±7	84±4
Dimethomorph	95±5	85±4
Dimoxystrobin	85±5	74±6
Dinotefuran	88±4	78±5
Diuron	74±12	90±1
Ethofumesate	92±10	95±14
Famoxadone	87±3	86±5
Fenamidone	88±5	80±5
Fenbuconazole	133±21	90±11
Fenhexamid	91±5	83±4
Fenpropimorph	86±6	84±4
Fluconazole	112±4	101±2
Fludioxinil	91±2	87±8
Furathiocarb	81±4	77±4
Hexaconazole	90±2	77±7
Imazalil	89±5	83±5
midacloprid	94±6	87±4
Ipconazole	89±5	83±5
Iprovalicarb	94±6	87±4
Kresoxim-methyl	85±5	86±5
Mepanipyrim	76±6	94±12

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

Metalaxyl	94±5	85±5
· · · · · · · · · · · · · · · · · · ·		
Methamidophos	82±6	74±5
Methomyl	90±4	81±4
Methoxyfenozide	102±5	89±5
Mevinphos	84±5	71±4
Myclobutanil	96±8	90±4
Omethoate	82±4	75±4
Oxadixyl	94±3	88±4
Piperonyl butoxide	94±5	87±4
Prochloraz	84±3	84±5
Propamocarb	80±3	80±5
Propargite	93±6	86±2
Propiconazole	94±4	86±5
Propoxur	89±5	82±4
Pyraclostrobin	77±6	76±4
Pyridaben	85±4	83±4
Pyrimethanil	79±6	75±4
Quinoxyfen	70±5	68±3
Rotenone	81±3	85±9
Simazine	85±9	88±7
Spinosyn A	88±7	83±4
Spinosyn D	87±4	80±3
Spiroxamine	92±5	84±4
Tebuconazole	90±4	83±5
Thiabendazole	71±3	75±5
Triadmimefon	89±8	84±7
Trifloxystrobin	90±8	84±4
Triflumizole	88±6	86±3
Vamidothion	86±4	83±6
Zoxamide	86±4	80±4

*Adapted from Kai Zhang, Jon W. Wong et al, Multiresidue Pesticide Analysis of Wines by Dispersive Solid-phase Extraction and Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry Journal of Agricultural and Food Chemistry

DCN-201101-137

Determination of Pesticides in Red Wine by QuEChERS Extraction, Quick QuEChERS Cleanup, and LC/MS/MS Detection

UCT Part Numbers:

RFV0050CT: 50 mL polypropylene centrifuge tube **ECQUUS2-MP:** Mylar Pouch contains: 4000 mg MgSO₄, 2000 mg NaCl **ECPURMPSMC:** Quick QuEChERS mini-cartridge contains: 110 mg MgSO₄, 180 mg PSA

March 19, 2012

Introduction

The analysis of pesticide residues in red wines is challenging due to the complexity of the matrix, which contains organic acids, sugars, phenols and pigments, such as anthocyanins. A simple, fast and easy to use method is developed for the determination of pesticide residues in red wines.

Eight pesticides with a wide range of polarities (LogP from -0.779 to 5.004) were selected as target analytes. Excellent accuracy and precision data were achieved. Recoveries of planar pesticides, such as Carbendazim and Thiabendazole were not affected with this method as PSA instead of GCB was used to clean up organic acids, sugars and pigments in red wine extract.

Six red wine samples were extracted using this method, Cyprodinil and Carbendazim were detected in the red wine samples tested, with minimum reporting limit of 1.5 ng/mL.

Procedure

1) Extraction

- a) Add 10 mL red wine sample to 50-mL polypropylene centrifuge tubes (RFV0050CT)
- b) Spike with appropriate amount of target analytes for fortified samples
- c) Vortex 30 sec, then equilibrate for 15 min
- d) Add 10 mL acetonitrile, vortex 30 sec
- e) Add salts in Mylar pouch (ECQUUS2-MP)
- f) Shake vigorously for 1 min
- g) Centrifuge at 5000 rpm for 5 min at 20° C
- h) Supernatant is ready for cleanup

2) Quick QuEChERS Cleanup

- a) Load 1 mL of supernatant with polypropylene syringe
- b) Pass the supernatant slowly through Quick QuEChERS mini-cartridge (ECPURMPSMC)
- c) Collect 0.5 mL cleaned extract into a 2 mL auto-sampler vial
- d) Add 10 µL 5 ppm TPP as internal standard (IS)
- e) Samples are ready for LC/MS/MS analysis

Cleanup red wine extract with Quick QuEChERS

Quick QuEChERS before (left) and after (right) cleanup of 1 mL red wine extract

3) LC/MS/MS Detection

LC: Thermo Accela 1250 pump with PAL auto-sampler

LC Conditions

Column	Guard column: Restek C18, 2.1 x 20 mm Column: Sepax HP-C18, 2.1 x 100 mm, 3 µm, 120 Å
Column Temperature	Ambient
Injection Volume	10 μL at 15° C
Mobile Phase	A: 0.1% formic acid in Milli-Q-water
	B: 0.1% formic acid in methanol
Flow Rate	200 μL/min

LC Gradient Program

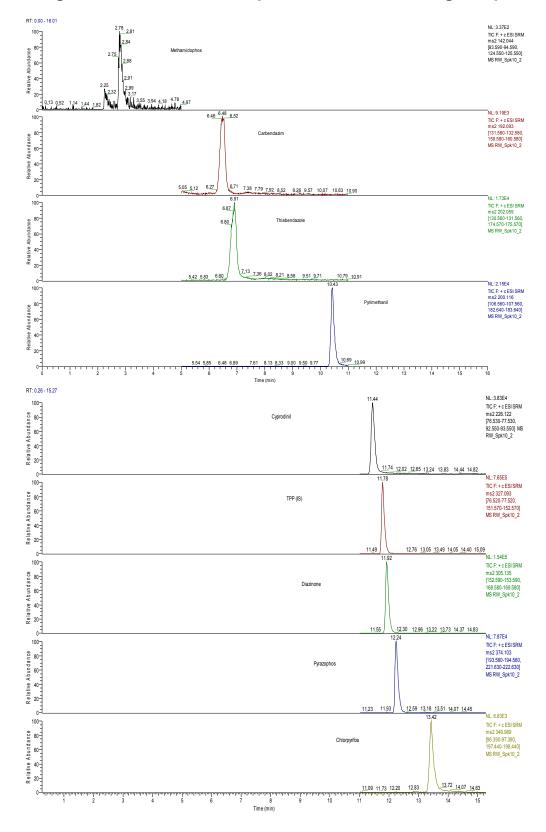
Time	% A	%В
0	95	5
1	95	5
3	50	50
8	5	95
14.2	95	5
16	95	5

MS Conditions

lon source:	Heated ESI
lon polarity:	ESI +
Spray voltage:	3000 V
Sheath gas pressure:	N ₂ @ 40 psi
Auxiliary gas pressure:	N ₂ @ 10 psi
Ion transfer capillary temperature:	350 °C
Scan type:	SRM (0-16 min)
CID conditions:	Ar @ 1.5 mTorr

SRM transitions

Compound	Parent	Product ion 1	CE	Product ion 2	CE	S-Lens	Dwell time (s)
Methamidophos	142.044	94.090	14	125.050	16	59	0.15
Carbendazim	192.093	132.080	29	160.080	17	81	0.10
Thiabendazole	202.059	131.060	31	175.070	31	103	0.10
Pyrimethanil	200.116	107.060	23	183.140	22	66	0.10
Cyprodinil	226.122	77.030	40	93.050	33	88	0.10
TPP (IS)	327.093	77.020	37	152.070	33	98	0.10
Diazinone	305.135	153.090	15	169.08	14	89	0.10
Pyrazophos	374.103	194.060	20	222.130	20	104	0.10
Chlorpyrifos	349.989	96.890	32	197.940	17	69	0.10


Compound	Linearity range (ng/mL)	R ²	LOD (ng/mL)	LOQ (ng/mL)
Methamidophos	2-400	0.9991	0.15	0.49
Carbendazim	2-400	0.9981	0.40	1.33
Thiabendazole	2-400	0.9940	0.09	0.31
Pyrimethanil	2-400	0.9990	0.01	0.05
Cyprodinil	2-400	0.9995	0.17	0.57
Diazinone	2-400	0.9982	0.06	0.21
Pyrazophos	2-400	0.9976	0.08	0.27
Chlorpyrifos	2-400	0.9981	0.10	0.32

Matrix matched calibration, LOD and LOQ

Accuracy and Precision Data

Compound	Fortified at 1	0 ng/mL	Fortified at 50 ng/mL		Fortified at 100 ng/mL	
	Recovery%	RSD% (n=4)	Recovery%	RSD% (n=4)	Recovery%	RSD% (n=4)
Methamidophos	93.7	3.4	81.6	5.8	84.2	3.5
Carbendazim	105.7	10.8	100.1	10.6	90.5	7.6
Thiabendazole	91.2	4.9	87.9	6.8	85.0	4.0
Pyrimethanil	112.2	2.7	107.0	3.2	102.8	4.9
Cyprodinil	104.3	3.2	99.9	6.1	100.2	4.9
Diazinone	104.9	5.6	102.0	6.6	99.2	6.8
Pyrazophos	99.9	4.0	96.6	5.6	91.3	4.1
Chlorpyrifos	91.7	4.6	99.5	5.2	97.2	3.8

Chromatograms of red wine sample fortified with 10 ng/mL pesticides

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

Pesticide	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Methamidophos	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Carbendazim	< 1.5	< 1.5	< 1.5	10.2	8.7	2.3
Thiabendazole	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Pyrimethanil	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Cyprodinil	1.7	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Diazinone	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Pyrazophos	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Chlorpyrifos	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5

Pesticides detected in red wine samples (ng/mL)

DCN-219130-232

Flukicides / Anthelmintics by QuEChERS ENVIRO-CLEAN[®] Part Number: ECMSSC50CT-MP ECMSC1850CT

November 5, 2009

Analysis of Anthelmintics in Animal Tissue Using QuEChERS and LC/MS/MS

1) Extraction

- a) To 10 g of homogenized/hydrated sample in a 50 mL centrifuge tube add 10 mL acetonitrile
- b) Add internal standard (Cyprodinil + 2,4D)
- c) Shake for 1 minute
- d) Add contents of ECMSSC50CT-MP pouch (4 g of anhydrous magnesium sulfate and 1 g sodium chloride) to the centrifuge tube
- e) Immediately shake for 1 minute
- f) Centrifuge for 5 minutes at 3450 rcf

2) Sample Clean-Up

- a) Add an aliquot of supernatant from (step 1 f) to product ECMSC1850CT (50 mL centrifuge tube containing 1500 mg anhydrous magnesium sulfate and 500 mg C18)
- b) Shake for 1 minute
- c) Centrifuge for 1 minute at 3450 rcf

3) Analysis

- a) Place 0.5 mL into auto sampler vial
- b) Add QC spike (TPP)
- c) Inject onto LC-MS/MS
- d) Use mode ESI + or ESI- depending upon specific analyte of interest

39 Flukicides/Anthelmintics

	ESI-	
IS Triphenylphosphate	QC Spike Cyprodinil	IS 2,4D
Abamectin	Albendazole	Bithionol
Doramectin	Albendazole sulfoxide	Clorsulon
Emamectin	Albendazole sulfone	Closantel
Eprinomectin	Albendazole amino sufone	Niclosamide
Moxidectin	Cambendazole	Nitroxynil
Lyermectin	Flubendazole	Oxyclozanide
Selemectin	Flubendazole, amino	Rafoxanide
Diclorvos	Flubendazole, hydroxy	Triclabendazole
Coumaphos	Fenbendazole	
Coumaphos-Oxon	Fenbendazole sulfone	
Haloxon	Oxfendazole	
Morantel	Mebendazole	
Levemisole	Mebendazole, amino	
	Mebendazole, hydroxy	
	Oxibendazole	
	Thiabendazole	
	Thiabendazole, 5-hydroxy	
	Triclabendazole	
	Triacleabendazole suldxide	

Adapted from Kinsella, Lehotay et al, "New method for the Analysis of Anthelmintics in Animal Tissue"

DCN-905011-178

Streamlined Method for the Determination of More Than 100 Veterinary Drugs in Animal Tissue Using Dispersive-SPE Clean-up and LC- MS/MS Detection

UCT Part Numbers: ECMSC1850CT contains (500 mg C18 and 1500 mg MgSO₄) August 31, 2012

More than 100 veterinary drugs can be extracted and analyzed using this fast and easy multi-class, multi-residue method.

Procedure

1) Extraction

- a) Weigh 2 g of homogenized tissue sample into a 50 mL centrifuge tube
- b) Add 10 mL of MeCN/water (4/1 v/v)
- c) Shake or vortex for 5 min
- d) Centrifuge for 5 min at >3700 rcf
- e) Supernatant is ready for clean-up

2) dSPE Clean-up

- a) Transfer the supernatant into product ECMSC1850CT
- b) Add 10 mL hexane that has been pre-saturated with MeCN
- c) Shake or vortex for 30 sec
- d) Centrifuge for 5 min at >3700 rcf
- e) Aspirate hexane to waste
- f) Evaporate 5 mL of the extract under nitrogen at 45°C to <0.7 mL
- g) Add 0.1% formic acid to reach a final volume of 1 mL (1 g/mL sample equivalent)
- h) Transfer sample to a HPLC vial (filter with PVDF if desired)
- i) Sample is ready for LC-MS/MS analysis

3) LC-MS/MS analysis

MS: Waters TQD HPLC: Waters Acquity UHPLC

LC Parameters

Guard	Agilent Eclipse Plus C18, 5 µm, 4.6 x 12.5 mm
Column	Waters Acquity HSS T3 (C18), 1.8 µm, 2.1 x 100 mm
Flow	0.5 ml/min
Injection Vol	20 µl
Oven	40 °C
Equilibration Time	3.3 min
Autosampler Temperature	4 °C

Mobile Phase

Aqueous A: 0.1 % formic acid in water/MeCN (95/5 v/v) Organic B: 0.1 % formic acid in MeCN

Time	%B
0	0.2
0.1	0.2
8.0	99.8
9.5	99.8
9.6	0.2
13	0.2

For analysis of late eluting compounds, 50 μ L/min of 27 mM ammonium formate in MeOH:MeCN (75:25) is infused from 5.05 to 9.45 min using the instrument's infusion syringe to enhance the signal of the late-eluting anthelmintics.

MS Instrument Settings

Capillary voltage	3000 V
Extractor voltage	3 V
Desolvation temperature	450°C
Source temperature	150°C
Dwell time	5 msec

Analyte	Drug class	RT (min)	Precursor ion	Cone V	Product 1	Collision energy (V)	Product 2	Collision energy (V)
Desacetyl Cephapirin	β-Lactam	0.69	382.1	32	152	28	124.2	48
Florfenicol Amine	Phenicol	0.68	248.1	25	230.2	10	130.1	35
Sulfanilamide	Sulfonamide	1.19	173	40	92.9	20	75.9	36
Amoxicillin	β-Lactam	1.47	366.1	20	114	22	349.3	10
Salbutamol	β -Agonist	1.46	240.2	20	148.2	20	222.3	10
Zilpaterol	β -Agonist	1.46	262.3	27	244.3	12	185.2	30
Cimaterol	β -Agonist	1.51	220	16	143	24	115.9	34
DCCD	β -Lactam	1.72	549.1	40	183	30	241.1	20
Lincomycin	Lincosamide	1.87	407.3	20	126.1	30	359.2	20
Sulfadiazine	Sulfonamide	2	251.1	30	156.1	15	108	20
Ampicillin	β -Lactam	2.01	350.1	26	106.1	24	114	30
Desethylene Ciprofloxacin	Fluoroquinolone	2.06	306.2	35	288.2	20	245.2	20
Sulfathiazole	Sulfonamide	2.1	256.1	25	156.1	15	108	25
Sulfapyridine	Sulfonamide	2.18	250.1	32	156.1	18	108.1	28
Norfloxacin	Fluoroquinolone	2.16	320.2	36	276.2	18	233.1	26
Tulathromycin	Macrolide	2.17	806.8	38	72	56	577.5	24
Oxytetracline	Tetracycline	2.21	461.2	25	426.4	20	443.4	15
Ciprofloxacin	Fluoroquinolone	2.22	332.2	35	245.2	25	288.4	20
Ractopamine	β -Agonist	2.27	302.2	26	164	16	107	32
Sulfamerazine	Sulfonamide	2.3	265.1	28	91.9	28	155.9	16
Danofloxacin	Fluoroquinolone	2.31	358.1	28	96	26	314.2	18
Tetracyline	Tetracycline	2.35	445.2	30	154.1	30	410.2	20
Enrofloxacin	Fluoroquinolone	2.38	360.2	35	316.4	20	245.3	25
2-Quinoxalinecarboxylic Acid	Other	2.43	175	22	129	16	131	16
Sulfamethizole	Sulfonamide	2.55	271.1	28	156.1	16	92	30
Sulfamethazine	Sulfonamide	2.54	279.1	35	186.1	20	156.1	20
Sulfamethazine-13C6 (IS)		2.54	285.2	32	186.1	18	124.1	26
Cefazolin	Cephalosporin	2.56	455.1	20	156	16	323.2	12
Sulfamethoxypyridazine	Sulfonamide	2.58	281.1	30	156.1	20	126.2	20
Difloxacin	β -Lactam	2.62	400.3	35	356.4	20	299.2	30
Sarafloxacin	Fluoroquinolone	2.58	386.1	20	342.2	20	299.2	30
Clenbuterol	β -Agonist	2.56	277.2	25	259.2	10	132.1	30
Pirlimycin	Lincosamide	2.74	411.3	30	112.2	40	363.3	20
Chlortetracycline	Tetracycline	2.84	479.2	30	154.1	30	444.3	20
Clindamycin	Lincosamide	2.89	425.3	45	126.2	40	377.4	20
Gamithromycin	Macrolide	2.91	777.8	62	83	54	116	50
Sulfachloropyridazine	Sulfonamide	2.95	285	28	156.1	16	108	26
Tilmicosin	Macrolide	3.06	869.8	45	174.2	35	696.6	35
Sulfadoxine	Sulfonamide	3.1	311.2	35	156.1	20	108.1	30
Sulfamethoxazole	Sulfonamide	3.11	254	26	92.1	30	156	18
Sulfaethoxypyridazine	Sulfonamide	3.14	295.1	30	156.1	20	140.2	20
Florfenicol	Phenicol	3.15	358.1	24	241	18	206	28
Chloramphenicol	Phenicol	3.36	323.1	16	275	16	165	26

Erythromycin	Macrolide	3.49	734.8	30	158.2	36	115.9	54
Sulfadimethoxine	Sulfonamide	3.57	311.1	35	156.1	20	108	30
Sulfaquinoxaline	Sulfonamide	3.59	301.1	34	156.1	18	108	28
Prednisone	Corticosteroid	3.67	359.2	22	341.1	10	146.9	26
Tylosin	Macrolide	3.66	916.8	45	174.2	35	101.1	35
Penicillin G-d7 (IS)		3.86	342.1	46	183.1	26	160.1	24
Penicillin G	β -Lactam	3.86	335.1	18	176	16	160.1	18
Beta/Dexa-methasone	Corticosteroid	4.11	393.2	20	373.2	10	147.1	28
Sulfanitran	Sulfonamide	4.16	336.2	26	156	12	134.1	28
Sulfabromomethazine	Sulfonamide	4.21	357.1	35	92	30	156.1	25
Zeranol (α-Zearalanol)	Other	4.37	323.2	16	305.2	10	189.1	24
Oxacillin	β -Lactam	4.39	402.1	22	160	20	243.1	18
Atrazine (QC)		4.49	216.1	34	174	18	103.9	30
Cloxacillin	β -Lactam	4.66	436.2	22	160.1	12	277.1	16
Nafcillin	β -Lactam	4.79	415.2	20	199.1	14	171.1	38
Oxyphenylbutazone	NSAID	4.83	325.2	26	120.1	24	148.2	30
Flunixin	NSAID	4.86	297.1	42	279.1	22	109	50
Flunixin-d3 (IS)		4.82	300.1	40	282.1	24	112	54
Dicloxacillin	β -Lactam	5.03	470.2	22	160.1	14	311.1	16
Phenylbutazone	NSAID	5.93	309.1	28	120	20	91.8	30
Melengesterol Acetate	Other	6.3	397.4	30	279.3	20	337.5	15
2-thiouracil	Thyreostat	0.85	128.9	32	111.9	12	69.9	18
2-mercapto-1-	Thyreostat	1.14	114.9	40	87.9	16	73.9	16
6-methyl-2-thiouracil	Thyreostat	1.22	142.9	32	83.9	18	125.9	14
Metronidazole-OH	Nitroimidazole	1.42	188	22	123	14	126	18
Dipyrone	Tranquilizer	1.6	218.1	24	96.9	12	187	10
Dimetridazole-OH	Nitroimidazole	1.63	158	22	140	12	93.9	22
Metronidazole	Nitroimidazole	1.63	172	26	127.9	14	81.9	24
5-hydroxythiabendazole	Anthelmintic	1.7	218	50	190.9	26	147	32
Albendazole 2-amino-sulfone	Anthelmintic	1.85	240	36	133	28	198	20
Ronidazole	Nitroimidazole	1.85	201	18	139.9	10	54.8	20
Levamisole	Anthelmintic	1.86	205	40	178	22	90.9	34
Dimetridazole	Nitroimidazole	1.86	142	32	95.9	16	80.9	24
Thiabendazole	Anthelmintic	1.94	202	44	174.9	26	130.9	32
6-propyl-2-thiouracil	Thyreostat	2.15	171	38	154	18	112	20
2-mercaptobenzimidazole	Thyreostat	2.3	150.9	42	92.8	20	118	22
Azaperone	Tranquilizer	2.34	328.3	34	165	20	122.9	36
Orbifloxacin	Fluoroquinolone	2.39	396.2	36	352.2	18	295.1	24
Albendazole sulfoxide	Anthelmintic	2.44	282.1	28	240	14	207.3	24
Xylazine	Tranquilizer	2.48	221.1	42	164	26	147	24
Ipronidazole-OH	Nitroimidazole	2.54	186.1	22	168	14	121.8	20
Morantel	Anthelmintic	2.6	221.1	50	122.9	36	163.9	28
2-amino-Mebendazole	Anthelmintic	2.63	238.1	50	104.9	26	132.9	36
6-phenyl-2-thiouracil	Thyreostat	2.73	205	38	103	26	187.9	18
2-amino-Flubendazole	Anthelmintic	2.77	256	50 34	122.9	28	94.9 217	38
Cambendazole	Anthelmintic	2.83	303.1	34	261.1	18	217	28
Bacitracin	Other	2.87	475.3	26	85.9	24	199.1	30

Carazolol	Tranquilizer	2.9	299.3	34	116	20	97.9	22
Doxycycline	Tetracycline	2.91	445.3	28	428.2	20	97.9	46
Oxibendazole	Anthelmintic	2.95	250.1	34	218.1	18	175.9	28
Oxfendazole	Anthelmintic	3.01	316.1	40	158.9	32	191	22
Albendazole sulfone	Anthelmintic	3.02	298.1	38	266	20	159	36
Ipronidazole	Nitroimidazole	3.2	170.1	34	124	18	109	24
Clorsulon	Flukicide	3.39	377.7	24	341.8	12	241.9	20
Haloperidol	Tranquilizer	3.53	376.2	40	165	24	122.9	42
Acetopromazine	Tranquilizer	3.55	327.2	32	86	20	254	22
Promethazine	Tranquilizer	3.58	285.2	24	85.9	16	198	20
Fenbendazole sulfone	Anthelmintic	3.65	332.1	40	300	22	158.9	38
Albendazole	Anthelmintic	3.65	266.1	34	234	20	191.1	32
Mebendazole	Anthelmintic	3.7	296.1	36	264.1	20	104.9	36
Flubendazole	Anthelmintic	3.9	314.1	38	282	22	94.9	50
Propionylpromazine	Tranquilizer	3.91	341.2	32	85.9	22	268.1	24
Chlorpromazine	Tranquilizer	4.04	319.2	32	86	20	246	22
Triflupromazine	Tranquilizer	4.26	353.2	34	85.9	22	280	28
Fenbendazole	Anthelmintic	4.33	300.1	38	268	20	158.9	36
Oleandomycin triacetate	Macrolid	4.37	814.7	38	200.1	30	98	48
Nitroxynil	Flukicide	4.41	288.8	40	126.8	20	115.9	34
Virginiamycin M1	Other	4.49	526.4	26	508.3	12	108.9	44
Ketoprofen	Tranquilizer	4.71	255.1	28	104.9	24	209	14
Haloxon	Anthelmintic	5.28	415.1	44	272.9	34	210.9	36
Triclabendazole sulfoxide	Flukicide	5.37	372.8	36	357.8	18	212.9	30
Emamectin benzoate	Anthelmintic	5.49	886.8	52	158	40	126	46
Diclofenac	Tranquilizer	5.55	296	20	214.9	20	250	12
Triclabendazole	Flukicide	5.99	359	52	343.9	26	274	38
Novobiocin	Other	6.05	613.5	30	189	28	132.9	64
Oxyclozanide	Flukicide	6.08	399.6	38	363.8	14	175.9	24
Niclosamide	Flukicide	6.2	325	36	170.9	30	289	16
Tolfenamic acid	Tranquilizer	6.23	262.1	22	244	14	180	40
Bithionol	Flukicide	6.76	352.9	36	160.8	24	191.2	28
Eprinomectin	Anthelmintic	7.44	914.8	18	186.1	20	154	40
Abamectin	Anthelmintic	7.94	890.8	16	305.3	28	145	42
Closantel	Flukicide	8.07	660.9	70	126.8	54	344.8	32
Doramectin	Anthelmintic	8.3	916.9	22	331.3	26	113	56
Moxidectin	Anthelmintic	8.32	640.5	16	528.3	8	498.2	10
Rafoxanide	Flukicide	8.5	623.9	62	126.1	48	344.8	30
Selamectin	Anthelmintic	8.62	770.7	36	145	30	112.9	40
Ivermectin [M+Na] ⁺	Anthelmintic	8.77	897.8	82	183	58	329.2	56

Accuracy and Precision

A multi-day, multi-analyst validation demonstrated that the final method is suitable for screening of 113 analytes, identifying 98 and quantifying 87 out of the 127 tested drugs at or below US regulatory tolerance levels in bovine muscle. Overall, the method demonstrated reasonably good quantitative performance with recoveries ranging between 70–120% for 87 out of 127 analytes, and recovery of < 50% for only 20 analytes. 85 analytes gave RSDs \leq 20% and 100 analytes gave RSDs \leq 25%.

Adapted from L. Geis-Asteggiante, S.J. Lehotay, A.R. Lightfield, T. Dutko, C. Ng, L. Bluhm, Ruggedness testing and validation of a practical analytical method for >100 veterinary drug residues in bovine muscle by ultrahigh performance liquid chromatographyndashtandem mass spectrometry, Journal of Chromatography A 1258 (2012) 43-54.

DCN-211380-244

Acrylamide by QuEChERS Extraction with LC/MS/MS Detection

UCT Products:

ECMSSC50CT-MP Mylar pouch contains: 4000 mg MgSO₄, 1000 mg NaCl **CUMPS15C18CT** Each 2 mL centrifuge tube contains: 150 mg, MgSO₄, 150 mg PSA and 50 mg endcapped C18 August 31, 2012

Acrylamide is a neurotoxin and classified as a probable human carcinogen and genotoxicant.

Procedure

- 1. Extraction
 - a. Add 5 g of homogenized sample to a 50 mL centrifuge tube
 - b. Fortify with ISTD
 - c. Add 10 mL of reagent water, vortex
 - d. Allow >15 minutes for hydration
 - e. Add 10 mL of acetonitrile, vortex
 - f. Add salts from Mylar pouch ECMSSC50CT-MP
 - g. Shake vigorously for 1 min
 - h. Centrifuge at 5000 rpm for 10 min
 - i. Supernatant is ready for cleanup

2. Cleanup

- a. Add 1 mL of supernatant to the 2 mL centrifuge tube CUMPS15C18CT
- b. Vortex for 30 sec
- c. Centrifuge at 5000 rpm for 10 min
- d. Transfer 500 μ L of extract into LC vial for analysis

LC/MS/MS Instrumentation

- LC: Thermo Accela 1250 pump
- Column: Sepax C18, 150 mm x 2.1 mm, 3µm
- Guard: Restek C18 2.1 x 20mm
- Column Temperature: Ambient
- Injection: 20 µL at 15° C
- Mobile Phase: A: water; B: methanol
- Flow Rate: 200 µL/min

Mobile Phase Program

Time	Mobile Phase
0 min	100% A
3 min	100% A
5 min	100% B
6 min	100% B
7 min	100% A
12 min	100% A*

* divert to waste for 0-1 min & 3-12 min

MS/MS: Thermo TSQ Vantage

- Ion source: APCI
- Ion polarity: positive mode
- Discharge Current: 22V
- Declustering voltage: 11 V
- Sheath gas: N₂ at 10 arbitrary units
- Auxiliary gas: N₂ at 15 arbitrary units
- Vaporizer Temp: 380 °C
- Ion Transfer Cap. Temp: 250 °C
- Scan Type: SRM
- Dwell Time: 150 ms
- CID Pressure: 0.5 mTorr

SRM Transitions							
Analyte	Parent ion	Product ion 1	Collision Energy	S-lens			
Acrylamide	72.0	55.0	9	43			
	72.0	27.0	20	43			
¹³ C ₃ -Acrylamide	75.1	58.0	10	50			

Acrylamide Recovery

Matrix n = 5	Analyte Conc. ng/mL	Recovery %	Mean Conc. ng/mL	SD (%)	RSD (%)
French	50	106	53	6.1	11.56
Fries	250	106	265	9.8	3.71
Potato	50	111	56	9.4	16.84
Chips	250	103	257	32.2	12.54
Multigrain	50	98	49	5.9	11.93
Cereal	250	93	232	9.2	3.97

DCN-211380-242

Trichothecene Type A & B Analysis in Wheat and Corn Using the QuEChERS Approach*

Part Number:

ECMSSC50CT-MP (50 mL centrifuge tube, 4 g anhydrous magnesium sulfate, 1 g NaCl) **CUMPS2CT** (150 mg anhydrous magnesium sulfate and 50 mg PSA January 22, 2010

Introduction

An extraction and purification method for the simultaneous LC-MS determination of five mycotoxins is described including three type A, diacetoxyscirpenol (DAS), T-2 toxin and HT-2 toxin, and two type B trichothecenes, deoxynivalenol (DON) and nivalenol (NIV). The analysis has been optimized using a modified QuEChERS approach. These mycotoxins are responsible for a wide range of disorders in animals. They have been found to inhibit proteins synthesis and to have immunosuppressive and cytotoxic effects. Health risks associated with human exposure to *Fusarium* toxins are recognized worldwide and depend on concentration in a particular diet. The major dietary sources of trichothecenes are cereal products wheat and corn.

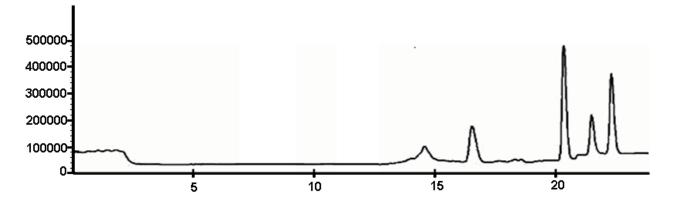
Procedure

1) Sample Preparation

- a) Thoroughly homogenize a sample of grain products using a laboratory mill
- b) Weigh 5 g of sample into the 50 ml centrifuge tube
- c) Add 10 mL of methanol:acetonitrile (85:15) into 50 mL centrifuge tube
- d) Shake to disperse solvent
- e) Add the contents of the **ECMSSC50CT-MP** pouch containing 4 g anhydrous magnesium sulfate, 1 g sodium chloride to the centrifuge tube
- f) Vortex for 1 minute then centrifuge @ 4,000 rpm for 10 minutes

2) Sample Cleanup

- a) Transfer a 1 mL aliquot to a 2 mL **CUMPS2CT** tube (150 mg anhydrous magnesium sulfate and 50 mg PSA)
- b) Shake for 1 minute
- c) Centrifuge for 10 minutes @ 4,000 rpm
- d) Filter extract through a 0.45 µm filter into an LC injection vial if supernatant is not clear
- e) Sample is now ready for analysis


3) Analysis

- a) MSD detection with atmospheric pressure ionization (API) configured for electrospray positive ion mode
- b) Analytical column: Luna C18 (250mm x 4.6 mm x 5 μm) or equivalent may be used but may change elution times
- c) Mobile phase A: 1% formic acid in water, B: 1% formic acid in methanol
- d) Gradient, Flow 0.5 mL/minute, Initial 40%B, 10 minutes 90% B until 25 minutes

Mass Ions for Mycotoxins [Na+M]					
lon	M/Z				
NIV	355				
DON	319				
DAS	389				
HT2	447				
T2	489				

Chromatogram Showing Elution of Mycotoxins

*Modified from Sospedra et al, "Use of the Modified Quick, Easy, Cheap, Effective, Rugged and Safe Sample Preparation Approach for the Simultaneous Analysis of Type A and B Trichothecenes in Wheat Flour," J of Chromatography A

DCN-102201-182

Multiresidue Analysis in Cereal Grains Using Modified QuEChERS Method with UPLC-MS/MS and GC-TOFMS*

Part Number:

ECMSSC50CT-MP (50 mL centrifuge tube, 4 g anhydrous. magnesium sulfate, 1 g NaCl) **CUMPS15C18CT** (150 mg anhydrous magnesium sulfate, 150 mg PSA and 50 mg C18) February 24, 2010

Introduction

This QuEChERS procedure is specifically developed for cereal grains (corn, oats, rice and wheat) using ultra pressure liquid chromatography-tandem mass spectrometry UPLC MS/MS and automated direct sample introduction GC-TOFMS to achieve good recoveries of over 150 analytes

Pesticide Reference Standards (Chemservice (West Chester, PA)

- Prepare individual pesticide stock solutions (2000 5000 μg/mL) in ethyl acetate or acetonitrile (MeCN) and store at -18° C
- Prepare two composite pesticide stock solutions, MIX-1 and MIX-2 at 10 µg/mL in MeCN
- Add 0.1% acetic acid to prevents degradation of base-sensitive analytes in MeCN See <u>http://forums.unitedchem.com/</u> for complete pesticide list and mixtures

Isotopically Labeled Internal Standards (Cambridge Isotope Laboratories, Inc. (Andover, MA))

Prepare at 5 µg/mL in acetone

- atrazine (ethylamine-d5)
- carbofuran (ring-¹³C6)
- dimethoate (o,o-dimethyl-d6)
- 2,4-DDT (ring-¹³C6)
- α-HCH (¹³C6)
- parathion (diethyl-d10)

QC Working Solution

• trans-permethrin (phenoxy- 13 C6) (1 and 5 µg/mL in acetone)

Procedure

1) Sample Preparation

- a) Thoroughly homogenize a sample of grain products using a laboratory mill to a flour-like consistency
- b) Place appropriate weight** of sample into the 50 ml centrifuge tube
- c) Add 10 mL of deionized water (15 mL for rice) and 10 mL of acetonitrile
- d) Add 200 μL of ISTD standard solution
- e) Vortex tube to disperse sample and standard for 1 hour using a wrist action shaker
- f) Add the contents of the ECMSSC50CT-MP pouch into the centrifuge tube
- g) Immediately seal tube and vortex for 1 minute
- h) Centrifuge @ rcf >3,000 for 10 minutes

2) Sample Cleanup

- a) Transfer a 1 mL aliquot to a 2 mL CUMPS15C18CT tube
- b) Vortex for 30 seconds
- c) Centrifuge for 5 minutes
- d) Transfer 300 μ L of the supernatant into the chamber of a Mini-UniPrep syringeless filter vial (Whatman) and add 30 μ L 1 μ g/mL QC solution*
- e) Mix thoroughly
- f) Transfer 125 μL of the extract in the Mini-UniPrep vial into a deactivated glass insert placed in a GC autosampler vial and cap the vial with a heat treated septum (overnight at 250° C)
- g) Press the 0.2 µm polyvinylidine fluoride (PVDF) filter of the Mini-UniPrep to filter the extract for the UPLC-MS/MS analysis
- h) Add 30 μL of QC standard solution
- i) Sample is now ready for analysis

3) Analysis UPLC-MS/MS

- Acquity UPLC interfaced to a Quattro Premier triple-quad mass spectrometer (Water's Corp.) MassLynx software v 4.1 or equivalent
- Column: Acquity UPLC BEH C18 (50 x 2.1 mm, 1.7 μm particle size, 130 Å pore size) or equivalent
- Temperature: 40°C
- Injection Volume: 2 µL

Binary Mobile Phase:

- A 10 mM ammonium formate in water (pH 3, adjusted with formic acid)
- **B** 10 mM ammonium formate in methanol

Gradient:

Flowrate: 450 µL/minute

Time minutes	% B
0	30
4	30
7.5	60
8.5	60
10.5	100
12.5	100
12.6	30
15.0	30

MS Determination

 Electrospray (ESI) positive mode combined with monitoring of the two most abundant MS/MS (precursor f product) ion transitions.

The MS source conditions:

- capillary voltage of 1.7 kV
- extractor voltage of 4.0 V
- RF lens at 0.9 V
- source temperature of 130° C
- desolvation temperature of 350° C
- collision gas (argon) pressure of 4.31 x 10-3 mbar
- desolvation gas (N2) flow of 600 L/h
- cone gas (N2) flow of 100 L/h

4) For GC amenable pesticides use automated DSI-GC-TOF Mass Analyzer

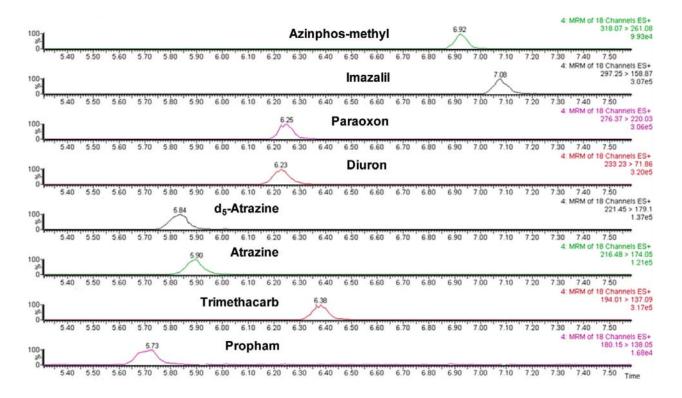
GC Column: Use a combination of a 20 m x 0.25 mm id x 0.25 μ m film thickness RTX-5 ms column and a 1m x 0.1 mm id x 0.1 μ m film thickness RTX-pesticide 2 column (Restek). This translates into a 1.68 m x 0.1 mm id "virtual" column setting in the ATAS Evolution software or equivalent

Oven Temperature Program (start after a 4.5 minutes solvent vent period):

60° C, hold for 4 minutes then ramped to 180° at 20° C/minutes, then ramp 5°C/minutes to 230° C, then 20°C/minutes to 280° C, and finally ramp to 300° C at 40° C/minutes, and hold for 12 minutes. The total run time is 35 minutes.

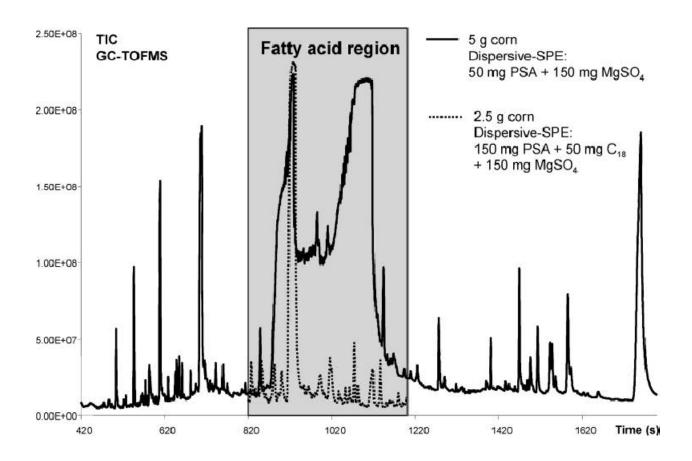
Automated DSI-GC-TOFMS Analysis.

- Agilent 6890 GC equipped with a secondary oven and nonmoving quad-jet dual stage modulator for two-dimensional comprehensive GC/GC chromatography or equivalent
- Pegasus 4D (Leco Corp., St. Joseph, MI) TOF mass spectrometer or equivalent
- Inject using CombiPAL autosampler (Leap Technologies, Carrboro, NC) or equivalent
- Automated DSI accessory (LINEX) with an Optic 3 programmable temperature vaporizer (PTV) inlet (ATAS-GL International, Veldhoven, The Netherlands) or equivalent
- Leco Chroma TOF (version 3.22) software for GC TOFMS control and data acquisition/processing or equivalent
- CombiPAL Cycle Composer with macro editor (version 1.5.2) and ATAS Evolution software (version 1.2a) to control the automated DSI process and PTV (including column flow) or equivalent


Automated DSI Injection:

- Inject 10 µL into a disposable microvial (1.9 mm i.d., 2.5 mm o.d., 15 mm, (Scientific Instrument Services, Ringoes, NJ), Siltek deactivated (Restek Bellefonte, PA) or equivalent
- Wash with acetone heated at 250° C
- Place in a LINEX DMI tapered liner
- The liner is then transferred into the Optic inlet

Optic 3 PTV Conditions:


- Solvent vent at an injector temperature of 100° C for 4.5 minutes
- Initial column flow of 0.8 mL/minutes and a split flow of 50 mL/minutes,
- Follow by a splitless transfer of analytes for 4 minutes. The injector temperature was ramped to 280° C (at 16° C/s) Column flow changed to 1.5 mL/minutes (kept constant for the entire GC run). After the splitless period, the split flow adjusted 50 mL/minutes for 6 minutes. After 6 minutes reduce split flow to 25 mL/minutes and decrease injector temperature to 250° C

Shown Below are the UPLC-MS/MS Extracted Ion Chromatograms of Selected Pesticides Spiked at 25 ng/g in Wheat Extract

Total Ion Chromatogram

DSI-LVI-GC-TOFMS analysis of a corn extract prepared using 5 g of sample, original QuEChERS (with 10 mL of water addition for swelling), and 50 mg of PSA in the dispersive SPE step. The highlighted region of the chromatogram is saturated with fatty acids. The dotted trace represents optimized analysis using 2.5 g of corn sample using dispersive SPE with 150mg of PSA and 50 mg of C_{18}

*Summarized from Mastovska et al, "Pesticide Multiresidue Analysis in Cereal Grains Using Modified QuEChERS Method Combined with Automated Direct Sample Introduction GC-TOFMS and UPLC-MS/MS Techniques", "J of Agricultural and Food Chemistry, Full article may be found at http://forums.unitedchem.com/

** Corn 2.5 g, oat 3.5 g, rice 5.0 g, wheat 5.0 g

Listing of chemical suppliers and instrument manufacturers does not constitute endorsement by UCT

DCN-014202-183

Extraction of Pesticides from Tomato Using the QuEChERS Approach

(This method is applicable to all pigmented fruit and vegetables)

March 17, 2010

UCT Products:

ECQUEU750CT-MP 4000 mg magnesium sulfate anhydrous, 1000 mg sodium chloride, 500 mg sodium citrate dibasic sesquihydrate, 1000 mg sodium citrate tribasic dihydrate

ECQUEU32CT 2 mL micro-centrifuge tube with 150 mg magnesium sulfate anhydrous, 25 mg primary secondary amine bonded phase (PSA) and 2.5 mg graphitized carbon black (GCB)

ECQUEU515CT 15 mL centrifuge tube with 900 mg magnesium sulfate anhydrous, 150 mg primary secondary amine (PSA) bonded phase and 15 mg graphitized carbon black (GCB)

1. Sample Preparation

- a) Add 15g of homogenized and hydrated tomato product (> 80% moisture) to a centrifuge tube
- b) Add 15 mL acetonitrile including internal standard
- c) Shake or vortex for 30 seconds
- d) Add contents of a package of ECQUEU750CT-MP to centrifuge tube
- e) Immediately, shake vigorously for 2 minutes
- f) Centrifuge for 2 minutes at 3450 rcf
- g) Draw 1 or 6 mL of supernatant for clean-up

2. Clean-Up

- a) For 1 mL of supernatant, use product ECQUEU32CT
- b) For 6 mL of supernatant, use product ECQUEU515CT
- c) Add supernatant to centrifuge tube and shake vigorously for 1 minute
- d) Centrifuge for 2 minutes at 3450 rcf

3. Analysis by GC (suggested)

- a) Transfer an aliquot of supernatant from step 2 to a centrifuge tube
- b) Add TPP solution and 1 mL of toluene
- c) Evaporate using nitrogen at 50°C to approximately 0.3 to 0.6 mL.
- d) Bring to 1 mL final volume with toluene
- e) Inject 8 µL on LVI/GC/MS

4. Analysis by LC (suggested)

- a) Transfer 0.25 mL of supernatant from step 2 to a LC vial.
- b) Add TPP solution and 0.86 mL of 6.7 mM formic acid
- c) Analyze by LC/MS/MS

References: QuEChERS AOAC Method 2007.01

Anastassiades, et al (2003) "Fast and Easy Multiresidue method employing acetonitrile extraction partitioning and dispersive solid-phase extraction for the determination of pesticide residues in product" Journal of AOAC International Vol 86 no. 2

www.quechers.com

DCN-017103-185

Pesticide and PAH Extraction of Grass and Other Leafy Vegetation by QuEChERS Using ChloroFiltr[®] Clean-Up

March 10, 2010

UCT Products:

ECQUEU7-MP 4000 mg mag. Sulfate, 1000 mg sodium chloride, 500 mg sodium citrate dibasic sesquihydrate, 1000 mg sodium citrate tribasic dihydrate

CUMPSGG2CT 2 mL micro-centrifuge tube containing 150 mg magnesium sulfate anhydrous,

50 mg primary secondary amine (PSA) and 50 mg $\rm ChloroFiltr^{\it @}$

ECMPSGG15CT 15 mL centrifuge tube with 900 mg magnesium sulfate anhydrous, 300 mg primary secondary amine (PSA) and 150 mg **ChloroFiltr**[®]

ECPAHFR50CT ENVIRO-CLEAN[®] PAH centrifuge tubes

1. Sample Preparation

- a) Add 15g of homogenized and hydrated sample (> 80% moisture) to a centrifuge tube
- b) Add 15 mL acetonitrile including internal standard
- c) Shake or vortex for 30 seconds
- d) Add the contents of package ECQUEU7-MP to centrifuge tube
- e) Immediately shake vigorously for 2 minutes
- f) Centrifuge for 2 minutes at 3450 rcf
- g) Draw 1 mL or 3-8 mL of supernatant for clean-up

2. Clean-Up

- a) For 1 mL of supernatant, use product CUMPSGG2CT
- b) For 3 mL of supernatant use product ECMPSGG15CT
- c) Add supernatant to centrifuge tube and shake vigorously for 1 minute
- d) Centrifuge for 2 minutes at 3450 rcf

Notes:

- a) Triphenyl phosphate may be used as a surrogate
- b) Calibrate instruments using matrix matched standards

DCN-117090-184

Extraction of Polycyclic Aromatic Hydrocarbons from Fish Using the QuEChERS Approach

UCT Products:

ECMSSC-MP (4000 mg mag. Sulfate, 1000 mg sodium chloride) ECMPSC1815CT (900 mg MgSO4, 300 mg PSA and 150 mg endcapped C18) ECPAHFR50CT ENVIRO-CLEAN® PAH centrifuge tubes June 01, 2010

The QuEChERS approach is used for the extraction of 16 PAH compounds from fish with analysis by LC with fluorescence detection.

1) Extraction: Protect samples from exposure to light to avoid degradation

- a. 5 grams of homogenized fish are transferred to a 50 mL centrifuge tube
- b. Add 10 mL of acetonitrile
- c. Mix by shaking
- d. Add the contents of pouch containing 4 grams MgSO4 and 1 gram of NaCl to the centrifuge tube
- e. Immediately vortex the mixture for 3 minutes
- f. Centrifuge samples for 3 minutes at 3400 rpm
- g. Recover the clear supernatant for cleanup

2) Clean-up, Dispersive Solid-phase (dSPE)

- a. Use 3 mL of the supernatant for clean-up
- b. Add supernatant to centrifuge tube ECMPSC1815CT
- c. Shake for 1 minute
- d. Centrifuge for 1 minute at 3400 rpm
- e. Filter supernatant through 0.20 µm PTFE membrane filter
- f. Samples are ready for analysis

3) Analysis Conditions

a. Separation of the compounds is performed in a C18 column (CC 150/4 Nucleosil 100-5 C18 PAH, 150 x 4.0 mm; 5 µm particle size;
Macherey-Nagel, Duren, Germany) or equivalent maintained at room

temperature

- b. Inject 15 µL
- c. The initial composition of the mobile phase is 50% of ACN and 50% water
- d. A linear gradient to 100% is programmed in 15 minutes
- e. Final hold 13 minutes

f. Initial conditions are achieved within 1 minute and maintained for 6 min before next run.

- g. Total run time is 40 minutes
- h. Flow rate of 0.8 mL/minute

Fluorescence wavelength program:

Each compound is detected at its optimum excitation/emission wavelength pair: **315/260 nm** naphthalene, acenaphthene and fluorene **366/260 nm** Phenanthrene **430/260 nm** anthracene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, benzo(g,h,i)perylene and dibenzo(a,l)pyrene **505/290 nm** (indeno(1,2,3-cd)pyrene)

*Adapted from, Ramalhosa, Maria Joao et al, "Analysis of polycyclic aromatic hydrocarbons in fish: evaluation of a quick, easy, cheap, effective, rugged, and safe extraction method", J. Sep. Sci. 2009, 32, 3529 – 3538

DCN-212110-229

Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Seafood Using GC/MS

UCT Part Numbers:

ECQUUS2-MP (4 g of muffled anh. MgSO₄ and 2 g of NaCl)

ECPAHFR50CT (50 mL centrifuge tubes, PAHs removed)

EUSILMSSM26 (6 mL, 1g silica gel cartridge with 200 mg of muffled anhydrous sodium sulfate on top)

January 12, 2012

Background

This method is used for the determination of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in fish and seafood--oyster, shrimp, and mussel. Benzo[*a*]pyrene is the main analyte of interest. GC/MS instrumentation is used for analysis.

РАН	Abbreviation	РАН	Abbreviation
Anthracene	Ant	Indeno[1,2,3- <i>cd</i>]pyrene	IcdP
Benz[<i>a</i>]anthracene	BaA	Naphthalene	Naph
Benzo[<i>a</i>] pyrene	BaP	Phenanthrene	Phe
Benzo[<i>b</i>]fluoranthene	BpF	Pyrene	Pyr
Benzo[<i>k</i>]fluoranthene	BkF	3-Methylchrysene	3-MC
Benzo[<i>g,h,i</i>]perylene	BghiP	1-Methylnaphthalene	1-MN
Chrysene	Chr	1-Methylphenanthrene	1-MP
Dibenz[<i>a,h</i>]anthracene	DBahA	2,6 Dimethylnaphthalene	2,6-DMN
Fluoranthene	Flt	1,7-Dimethylphenanthrene	1,7-DMP
Fluorene	Fln		

PAH Analytes Covered in this Method

Procedure

1) Extraction

- a) To the 50-mL polypropylene centrifuge tube add 10 ± 0.1 g of homogenized seafood sample
- b) Add 50 μ L of 1 μ g/mL ¹³C-PAHs solution
- c) Vortex sample for 15 sec and then equilibrate for 15 min
- d) Add 5 mL of reagent water and 10 mL of ethyl acetate (EtOAC)
- e) Shake for 1 min

2) Partition

- a) Add the contents of pouch **ECQUUS2-MP**. Tightly seal the tube to ensure that salts do not get into the screw threads
- b) Shake for 1 min
- c) Centrifuge at > 1,500 rcf for 10 min
- d) Remove 5-mL aliquot of the upper ethyl acetate layer, add 50 µL of isooctane as a keeper
- e) Evaporate all ethyl acetate until only isooctane and co-extracted sample fat remain
- f) Reconstitute with 1 mL of hexane

3) Clean-Up

- a) Condition a silica SPE column **EUSILMSSM26** (Note 1) (1 g of silica gel with approx. 0.2 g of muffled anh. sodium sulfate on the top) with 6 mL of hexane:dichloromethane (3:1 v/v) and 4 mL of hexane
- b) Apply the reconstituted extract to the silica SPE cartridge (**Note 2**)
- c) Elute with 10 mL of hexane:dichloromethane (3:1 v/v) and collect the eluent
- d) Add 0.5 mL isooctane to the eluent as a keeper and evaporate to 0.5 mL to remove hexane and dichloromethane from the final extract
- e) Transfer the final extract into an autosampler vial for GC/MS analysis

Notes:

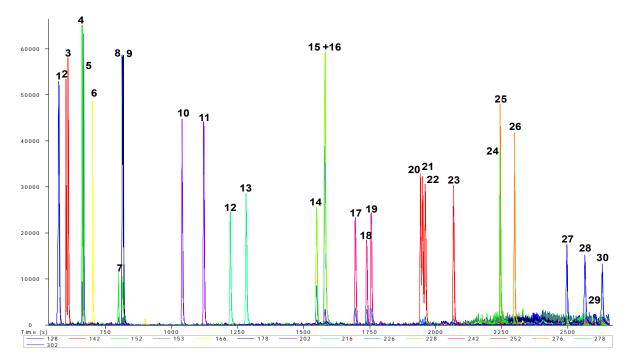
- 1. The fat capacity of the 1-g silica gel SPE column is approx. 0.1 g. If the ethyl acetate extract aliquot contains more than 0.1 g of fat, use a smaller aliquot to avoid sample breakthrough
- 2. Ethyl acetate should not be present in the extract applied to the silica cartridge as it affects extract polarity and potential retention of fat and analytes on the silica gel.

Column	BPX-50 (30 m x 0.25 mm i.d. x 0.25 µm film thickness)
Oven Temperature Program	80°C (hold for 4.3 min), 30°C/min to 220°C, 2°C/min to 240°C, and 10°C/min to 360°C (hold for 17 min)
He Flow Rate	1.3 mL/min (hold for 19 min), then 50 mL/min to 2 mL/min (hold for 16 min)
Injection Technique	PTV solvent vent
Injection Volume	1 x 8 µL
Vent Time	2.3 min
Vent Flow	50 mL/min
Vent Pressure	50 psi
Inlet Temperature Program	50°C (hold for 2.3 min), then 400°C/min. to 300°C

GC Conditions for the Analysis of PAHs

MS Conditions

Any GC-MS instrument (single quadrupole, triple quadrupole, time-of-flight or ion trap) with electron ionization (EI) may be used


MS lons (*m*/*z*) for Quantification and Identification of Target PAHs for Single-stage MS Instruments

Analyte PAH's	Abbreviation	Confirmation lons <i>(m/z)</i>	Quantification lons <i>(m/z)</i>
Anthracene	Ant	177	178
Benz[<i>a</i>]anthracene	BaA	226	228
Benzo[<i>a</i>] pyrene	BaP	253	252
Benzo[<i>b</i>]fluoranthene	BpF	253	252
Benzo[<i>k</i>]fluoranthene	BkF	253	252
Benzo[<i>g,h,i</i>]perylene	BghiP	277	276
Chrysene	Chr	226	228
Dibenz[<i>a,h</i>]anthracene	DBahA	276	278
Fluoranthene	Flt	200	202
Fluorene	Fln	165	166
Indeno[1,2,3-cd]pyrene	IcdP	277	276
Naphthalene	Naph	127	128
Phenanthrene	Phe	177	178
Pyrene	Pyr	200	202
3-Methylchrysene	3-MC	241	242
1-Methylnaphthalene	1-MN	115	142
1-Methylphenanthrene	1-MP	189	192
2,6 Dimethylnaphthalene	2,6-DMN	141	156
1,7-Dimethylphenanthrene	1,7-DMP	191	206

MS lons (*m*/*z*) for Quantification and Identification of Target ¹³C-PAHs for Single-stage MS Instruments

Analyte PAH's	Abbreviation	Confirmation lons <i>(m/z)</i>	Quantification lons <i>(m/z)</i>
Naphthalene (¹³ C ₆)	Naph- ¹³ C ₆	133	134
Fluorene (¹³ C ₆)	FIn- ¹³ C ₆	171	172
Phenanthrene (¹³ C ₆)	Phe- ¹³ C ₆	183	184
Anthracene (¹³ C ₆)	Ant- ¹³ C ₆	183	184
Fluoranthene (¹³ C ₆)	FIt- ¹³ C ₆	205	208
Pyrene (¹³ C ₆)	Pyr- ¹³ C ₆	208	205
Benz[<i>a</i>]anthracene (¹³ C ₆)	BaA- ¹³ C ₆	232	234
Chrysene (¹³ C ₆)	Chr- ¹³ C ₆	232	234
Benzo[<i>b</i>]fluoranthene (¹³ C ₆)	BbF- ¹³ C ₆	259	258
Benzo[<i>k</i>]fluoranthene (¹³ C ₆)	BkF- ¹³ C ₆	259	258
Benzo[<i>a</i>]pyrene (¹³ C₄)	BaP- ¹³ C ₄	257	256
Indeno[1,2,3- <i>cd</i>]pyrene (¹³ C ₆)	IcdP- ¹³ C ₆	283	282
Dibenz[<i>a,h</i>]anthracene (¹³ C ₆)	DBahA- ¹³ C ₆	282	284
Benzo[<i>g,h,i</i>]perylene (¹³ C ₁₂)	BghiP- ¹³ C ₁₂	289	288

An example chromatogram of a GC separation of PAHs and their alkyl homologues in a standard solution mixture at 25 ng/mL in isooctane

- 1 naphthalene, 2 2-methylnaphthalene, 3 1-methylnaphthalene, 4 acenaphtylene,
- 5 acenaphthene, 6 fluorene, 7 dibenzothiophene, 8 phenanthrene, 9 anthracene,
- 10 fluoranthene, 11 pyrene, 12 1-methylpyrene, 13 benzo[c]fluorene,
- 14 benz[a]anthracene, 15 cyclopenta[c,d]pyrene, 16 chrysene, 17 1-methylchrysene,
- 18 5-methylchrysene, 19 3-methylchrysene, 20 benzo[b]fluoranthene,
- 21 benzo[k]fluoranthene, 22 benzo[/]fluoranthene, 23 benzo[a]pyrene,
- 24 dibenz[a,h]anthracene, 25 indeno[1,2,3-cd]pyrene, 26 benzo[g,h,i]perylene,
- 27 dibenzo[a,I]pyrene, 28 dibenzo[a,e]pyrene, 29 dibenzo[a,h]pyrene,
- 30 dibenzo[*a,i*]pyrene

*The analyst should refer to Katerina Mastovska, Wendy R. Sorenson, Covance Laboratories Inc Jana Hajslova, Institute of Chemical Technology, Prague "Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Seafood using Gas Chromatography-Mass Spectrometry: A Collaborative Study"

References

Lucie Drabova, Kamila Kalachova, Jana Pulkrabova, Tomas Cajka, Vladimir Kocourek and Jana Hajslova. "Rapid Method for Simultaneous Determination of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs) and Polybrominated Diphenyl Ethers (PBDEs) in Fish and Sea Food Using GC-TOFM," ICT document, Prague, Czech Republic, 2010.

DCN-218030-229

QuEChERS Analysis of Miticides and Other Agrochemicals in Honey Bees, Wax or Pollen*

UCT Part Number:

ECMSSA50CT-MP (6000 mg MgSO₄ and 1500 mg sodium acetate) **CUMPSC18CT** (150 mg MgSO4, 50 mg PSA, 50 mg C18) **ECPSACB256** (dual layer cartridge 250 mg GCB, 500 mg PSA) **ECMAG00D** (organic free magnesium sulfate anhydrous) March 30, 2012

*Summarized and adapted from: Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, et al. (2010) *High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health*. PLOS ONE 5(3): e9754. doi:10.1371/journal.pone.0009754

An analytical method using QuEChERS type procedures for 121 different pesticide residues is described. Extracts of wax, beebread, and adult bees or brood can also be analyzed for metabolites of primary miticides and insecticides using this method. This includes the oxon and phenolic metabolites of coumaphos, chlorferone, the sulfoxide and sulfone metabolites of aldicarb, and the toxic olefin and 5-hydroxy metabolites of imidacloprid.

Sample Collection and Preservation

- Wrap in aluminum foil and store on dry ice until placement in a -80° C freezer as soon as possible
- Beebread and brood can be removed from the combs at room temperature and then stored along with the remaining beeswax at -20° C until processed

1. Sample Preparation

- a) Weigh 3 grams beebread (or comb wax) into a 50 mL centrifuge tube
- b) Add 100 μ L of a process control spiking solution
- c) Add 27 mL of extraction solution (44% DI water, 55% acetonitrile & 1% glacial acetic acid).
 Brood and adults are extracted without using DI water.
- d) Add 100 µL of an internal standard
- e) For beebread, reduce particle size by using a high speed disperser for 1 minute
- f) For comb wax melt the sample at 80° C in a water bath followed by cooling to room temperature
- g) Add the contents of ECMSSA50CT-MP pouch to the mixture
- h) Seal tube and shake vigorously for 1 minute
- i) Centrifuge for 1 minute

2. Clean-Up for LC/MS-MS

- a) Transfer 1 mL of supernatant to CUMPSC18CT micro centrifuge tube
- b) Vortex for 1 minute and centrifuge
- c) Transfer supernatant to an autosampler vial for LC analysis

3. Clean-Up for GC/MS

- a) Prepare a dual layer solid-phase extraction cartridge **ECPSACB256** by adding about 80 mg of anhydrous magnesium sulfate (ECMAG00D) to the top of the cartridge
- b) Condition cartridge by adding 4.0 mL of acetone/toluene (7:3 v:v)
- c) Using a positive pressure or vacuum manifold, elute solvent to waste
- d) Add 2 mL of supernatant to the cartridge
- e) Elute cartridge using 3 x 4 mL of acetone/toluene & 7:3, (v:v) into a 15 mL graduated glass centrifuge tube
- f) Using an analytical evaporator @ 50°C, dry eluate to a final volume of 0.4 mL
- g) Sample is ready for analysis

4. Analysis—by LC or GC

LC analysis is necessary for neonicotinoids, other polar pesticides and their metabolites

For LC analysis

- a) Analysis by LC/MS-MS use a 3.5 µm 2.1 X 150 mm Agilent Zorbax SB-C18 (or equivalent)
- b) Agilent 1100 LC with a binary pump interfaced to a Thermo-Fisher TSQ Quantum Discovery triple quadrupole MS 9 (or equivalent)

For GC analysis

- a) For analysis use Agilent 6890 (or equivalent) GC equipped with a 0.25 mm, 30 m J&W DB-5MS (2 μm film) capillary column
- b) Interface to an Agilent 5975 triple quadrupole MS (or equivalent)
- c) Use GC/MS in the electron impact and negative chemical ionization modes

Aldicarb sulfoxide	Flutolanil
Aldicarb sulfone	Fluvalinate
Allethrin	Heptachlor
Atrazine	Heptachlor epoxide
Azinphos methyl	Hexachlorobenzene
Azoxystrobin	Imidacloprid
Bendiocarb	Iprodione
Bifenthrin	Malathion
Boscalid	Metalaxyl
Captan	Methidathion
Carbaryl	Methoxyfenozide
Carbendazim	Metribuzin
Carbofuran	Norflurazon
Carbofuran, 3-hydroxy	Oxyfluorfen
Carfentrazone ethyl	Parathion methyl
Chlorfenapyr	p-Dichlorobenzene
Chlorferone (coumaphos)	Pendimethalin
Chlorothalonil	Permethrin
Chlorpyrifos	Phosmet
contrast	Piperonyl butoxide
Coumaphos	Prallethrin
Coumaphos	Pronamide
Cyfluthrin	Propiconazole
Cyhalothrin	Pyraclostrobin
Cypermethrin	Pyrethrins
Cyprodinil	Pyridaben
DDE p,p'	Pyrimethanil
Deltamethrin	Pyriproxyfen
Diazinon	Quintozene
Dicofol	Spirodiclofen
Dieldrin	Tebufenozide
Dimethomorph	Tebuthiuron
DMA (amitraz)	Tefluthrin
DMPF (amitraz)	Tetradifon
Endosulfan I	Thiabendazole
Endosulfan II	Thiacloprid
Endosulfan sulfate	Triadimefon
Esfenvalerate	Tribufos
Ethion	Trifloxystrobin
Ethofumesate	Trifluralin
Fenamidone	Vinclozolin
Fenbuconazole	
Fenhexamid	
Fenpropathrin	
Fipronil	

DCN-011308-189

QuEChERS Pesticide Analysis for Fresh Produce by GC/MS/MS*

UCT Products: ECMSSC50CTFS-MP (6 grams MgSO₄, 1.5 g NaCl) ECQUEU1115CT (1.2 grams MgSO₄, 0.4 g PSA, 0.4 g GCB) ECMSC1850CT (1500 mg MgSO₄, 500 mg endcapped C18) ECMAG00D (organic free magnesium sulfate anhydrous) October 12, 2010

This modified QuEChERS procedure uses GC-MS/MS for analysis of organohalogen, organophosphorus, and pyrethroid pesticides in produce. It is an improvement over the traditional QuEChERS procedure since the sample extracts are in toluene instead of acetonitrile and cleaner due to additional cleanup procedures. In addition, the method uses smaller sample sizes and less solvent than standard multiresidue procedures, and the solid-phase dispersive steps involving GCB/PSA/C18 provide sufficient cleanup for GC-MS/MS analysis.

1) Sample Extraction

- a) Combine 15 g of cryo-ground sample with 15 mLs acetonitrile
- b) Add contents of ECMSSC50CTFS-MP
- c) Shake by hand for 2 minutes
- d) Add IS (500 µL of 3.4 µg/mL solution of tris(1,3-dichloroisopropyl) phosphate
- e) Centrifuge 4500 rpm for 5 minutes

4) Clean-Up

- a) Transfer upper layer (12 mLs) to a clean centrifuge tube ECMSC1850CT containing 0.5 grams
 C₁₈ and 1.2 g MgSO₄
- b) Shake for 1 minute and centrifuge @ 4500 rpm for 5 minutes
- c) Transfer 9 mL of supernatant to extraction tube containing ECQUEU1115CT
- d) Vortex 15 seconds
- e) Add 3 mL toluene
- f) Shake the centrifuge tube for 2 minutes
- g) Centrifuge @ 4500 rpm for 5 minutes
- h) Transfer extract to clean tube
- i) Reduce 6 mL volume to < 100 μ L using N₂ in an evaporator (35°C)
- j) Add 1.0 mL toluene and QC standard (20 μg/mL deuterated polycyclic hydrocarbons) along with 50 mg anhydrous MgSO₄
- k) Centrifuge @ 1500 rpm for 5 minutes
- I) Transfer 1.0 mL of extract to ALS vials for analysis

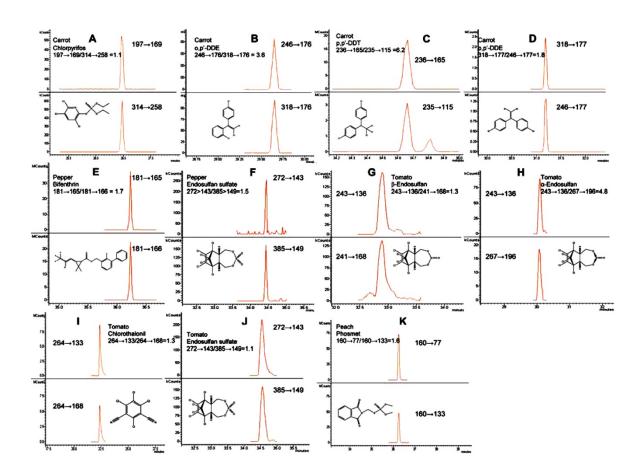
Note:

- Use matrix-matched calibration standards in toluene rather than standards prepared in solvent. This will compensate for matrix enhancement effects
- Coextractives in the sample matrix have been shown to cause an enhancement of the pesticide peak response in the matrix compared to that of the same amount of the pesticide in the matrix-free solvent

GC-MS/MS Tandem Mass Spectrometry

- Varian CP-3800 series gas chromatograph coupled with a Varian 1200 L triple-quadrupole mass spectrometer with a CTCCOMBI PAL autosampler (Varian Inc., Palo Alto, CA)
 - Column: Deactivated guard column (5 m x 0.25 mm i.d., Restek Corp.) Varian 30 m x 0.25 mm x 0.25 µm, VF-5 fused silica capillary analytical column
 - Head pressure 13.2 psi with 1.2 mL/min flow rate
 - He carrier gas
 - Column temperature programmed as follows:
 - o initial temperature 105° C for 6 min
 - o increased to 130° C at 10° C/min
 - $\circ~$ ramp to 230° C at 4° C/min and to 290° C at 1° C/min
 - Hold for 5.5 min.
 - o Total run time 45 min.
 - Injector temperature: 280° C
 - injection volume: 1.0 µL in splitless mode
 - Ion source and transfer line temperatures are 240° and 300° C, respectively
 - Set Electron multiplier voltage to 1400V by automatic tuning
 - Use argon collision gas for all MS/MS
 - Pressure in the collision cell 1.8 mTorr

Table of Analytes Covered in this Method


Analytes			
acenaphthene-d ₁₀	Diamidafos (nellite)	p,p'-methoxychlor	
acrinathrin	diazinon	metolachlor	
akton	Dibutyl chlorenate	mevinphos	
alachlor	dicapthon	mirex	
aldrin	dichlobenil	naphthalene-d ₈	
allethrin	dichlofenthion	<i>cis</i> -nonachlor	
atrazine	dichlofluanid	trans-nonachlor	
azamethiophos	3,4'-dichloroaniline	parathion	
azinphos-ethyl	4,4'-dichlorobenzophenone	parathion-methyl	
azinphos-methyl	dichlorvos	pentachloroaniline	
α-BHC	dicloran	pentachlorobenzene	
β-ВНС	dieldrin	pentachlorobenzonitrile	
δ-BHC	dimethachlor	Pentachlorphenyl methyl ester	
benfluralin	dioxabenzofos	pentachlorothioanisole	
bifenthrin	dioxathion	<i>cis</i> -permethrin	
bromophos	disulfoton	trans-permethrin	
bromophos-ethyl	ditalimfos	phenanthrene-d ₁₀	
bromopropylate	edifenphos	phenothrin	
captafol	α-endosulfan	phorate	
captan	β-endosulfan	phosalone	
carbophenothion	Endosulfan ether	phosmet	
<i>cis</i> -chlordane	Endosulfan sulfate	phenthoate	
trans-chlordane	endrin	pirimiphos-ethyl	
α-chlordene	Endrin aldehyde	pirimphos-methyl	
β-chlordene	Endrin ketone	procymidone	
γ-chlordene	EPN	profenofos	
•	ethalfluralin		
β-chlorfenvinphos		propachlor	
chlorobenzilate	ethion	propazine	
chloroneb	ethoprop	propetamphos	
chlorothalonil	etridazole	propyzamide	
chlorpyrifos	famphur	prothiophos	
chlorpyrifos-methyl	Fenamiphos (ronnel)	pyraclofos	
chlorthiophos	fenarimol	pyrazophos	
chrysene-d ₁₂	fenchlorphos	pyridaphenthion	
coumaphos	fenitrothion	quinalphos	
cyanazine	fensulfothion	quintozene	
cyanophos	fenthion	resmethrin	
Cyfluthrin 1	Fenvalerate 1	simazine	
Cyfluthrin 2	Fenvalerate 2	sulfotep-ethyl	
Cyfluthrin 3	fluchloralin	sulprofos	
Cyfluthrin 4	Flucythrinaten 1	tebupirimfos	
λ-cyhalothrin	Flucythrinate 2	propachlor	
Cypermethrin 1	fluridone	propazine	
Cypermethrin 2	Fluvalinate 1	Tecnazene (TCNB)	
Cypermethrin 3	Fluvalinate 2	tefluthrin	
Cypermethrin 4	folpet	temephos	
Dacthal (DCPA)	fonophos	terbufos	
o,p'-DDD	heptachlor	terbuthylazine	
<i>p,p'</i> -DDD	Heptachlor epoxide	2,3,5,6-tetrachloroaniline	
o,p'-DDE	hexachlorobenzene	tetrachlorvinphos	
p,p'-DDE	Iprobenfos (IBP)	tetramethrin	
<i>o,p'-</i> DDT	iprodione	thiometon	
p,p'-DDT	isazophos	tolclofos-methyl	
DEF (tribufos)	isofenfos	tolyfluanid	
deltamethrin	Jodfenphos (iodofenphos)	triallate	
demeton-S	leptophos	triazophos	
demeton-S-methyl	Lindane (BHC)	trifluralin	
dialifor	malathion	triphenyl	
Diallate 1	methidathion	tris(1,3-dichloroisopropyl) phosphate	

Problems with pesticides with low (<70%) recoveries or large variances (SD > 20%) may be attributed to the following issues:

- early eluting analytes
- sensitivity to pH changes
- prone to volatility loss (i.e., 3,4'-dichloroaniline, dichlorvos, diclobenil, and etridazole),
- strongly adsorbed to the PSA or GCB sorbents (i.e., chlorothalonil, endrin aldehyde, hexachlorobenzene, pentachlorobenzonitrile, and tachlorothioanisole)
- difficult to ionize by mass spectrometric detection (i.e., captafol, captan, dichlofluanid, folpet, and tolylfluanid).
- Highly nonpolar or late-eluting pesticides such as temephos and fluridone may also be problematic

For recovery data, target, qualifier and transition ions please reference original paper*

Reconstructed GC-MS/MS chromatograms of various commodities containing various pesticides including chlorpyrifos (A), o,p'-DDE (B), p,p'-DDT (C), and p,p'-DDE (D) present in carrot; bifenthrin (E) and endosulfan sulfate (F) present in bell pepper; β - (G) and R- (H) endosulfan, endosulfan sulfate (I) and chlorothalonil (J) present in tomato; and phosmet (K) in peach. Included are the transitions from precursor to product ions and the relative ion ratios between the two transitions, primary (top) and secondary (bottom), which are used for pesticide identification

Reagents and Materials

Obtain pesticide standards from:

- U.S. Environmental Protection Agency National Pesticide Standard Repository (U.S. EPA, Ft. Meade, MD)
- ChemServices (West Chester, PA), Sigma/Aldrich/Fluka Chemicals (St. Louis, MO),
- Crescent Chemicals (Islandia, NY)
- tris(1,3-dichloroisopropyl) phosphate from TCI America (Portland, OR)
- Quality control standards, naphthalene-d8, acenaphthalened10, phenanthrene-d10, and chrysene-d12 (Sigma/Aldrich/Fluka Chemicals (Milwaukee, WI).

*Adapted and used by permission from Jon W. Wong, Kai Zhang, "Multiresidue Pesticide Analysis In Fresh Produce By Capillary Gas Chromatography-Mass Spectrometry/Selective Ion Monitoring (GC-MS/SIM) and -Tandem Mass Spectrometry", (GC-MS/MS), J Agric. Food Sci., DOI: 10.1021/Jf903854n

Listing of instrument manufacturers and standards suppliers does not constitute endorsement by UCT. Equivalent systems may be used

DCN-012101-197

Analysis of Cyromazine in Poultry Feed Using a QuEChERS Approach

UCT Products: ECMSSA50CT-MP (6 g anhydrous MgSO₄ and 1.5 g Na Acetate) EEC18156 (500 mg endcapped C18, 6 mL cartridge) October 12, 2010

Introduction

This summary outlines a QuEChERS procedure for the analysis of the insecticide cyromazine (Trigard or Larvadex) in poultry feed by LC-MS/MS. Processing time is significantly faster than EPA method AG-555 and uses less solvent. Modifications include adding glacial acetic acid to the acetonitrile to increase extraction efficiency.

Procedure

1. Sample Preparation

- a) Homogenize 2 grams of poultry feed and add to a 50 mL centrifuge tube
- b) Add 10 mLs of acetonitrile/acetic acid (75:25)
- c) Sonicate at 50/60 Hz for 15 minutes
- d) Add the contents of ECMSSA50CT-MP pouch and shake for 1 minute
- e) Centrifuge at 3400 rpm for 10 minutes
- f) Transfer 1 mL of supernatant to a calibrated test tube and add 9 mL of water: acetonitrile (95:5) with 0.1% acetic acid

2. Sample Cleanup

- a) Add the 10 mLs from 1) f) above to a EEC18156 cartridge and elute dropwise
- b) Filter eluant using a 0.45 µm Teflon filter (Millipore, Billerica, MA) or equivalent
- c) Transfer 2 mL of eluant to an HPLC vial for analysis by LC-MS/MS

3. Analysis LC-MS/MS

• Waters Alliance 2695 HPLC (Waters) coupled with a micromass Quattro Micro triple-quadrupole mass spectrometer (Micromass, Manchester, U.K.) or equivalent

HPLC conditions:

Guard column (Alltima, C18, 5 μ m, 2.1 x 7.5 mm, Deerfield, IL) or equivalent **Analytical column** (Alltima, C18, 5 μ m, 2.1 x 250 mm, Waters) or equivalent **Mobile phase:** (A) acetonitrile with 0.1% formic acid and (B) water with 0.1% formic acid **Gradient:**

- o 0-2 min, 5%A
- \circ $\,$ 2-5 min from 5 to 10% A
- o 5-5.5 min from 10 to 90% A
- o 5.5-8 min 90 to 5% A
- o 8-10 min, from 90 to 5% A
- o 10-12 min, 5% A

Flow rate 0.2 mL/minute

Injection volume: 25 µL

• Mass Spectrometer

- o Positive ion mode electrospray ionization
- Monitor the ion transition of the parent ion (m/z 167) to the product ion (m/z 85) in multiple reaction monitoring (MRM)

Mass Spectrometry Conditions for Cyromazine Quantitation

capillary voltage	3.1 kV	
cone voltage	65 V	
collision energy	21-24 V	
source temperature	120° C	
desolvation temperature	350° C	
cone gas flow	135 L/h	
desolvation gas flow rate	750 L/h	
collision gas	Argon	
parent ion	(m/z) 167	
product ion	(m/z) 85	

*Summarized with permission from Xia, Kang, Atkins, Jack et al, "Analysis of Cyromazine in Poultry Feed Using the QuEChERS Method Coupled with LC-MS/MS" J. Agric. Food Chem, DOI:10.1021/jf9034282

Listing of instrument manufacturers does not constitute endorsement by UCT

Determination of Anthelmintic Drug Residues in Milk Using Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry*

UCT Products: ECMSSC50CT-MP (4000 mg anhydrous MgSO₄, 1000 mg NaCl) ECMSC1850CT (1500 mg anhydrous MgSO₄ and 500mg C18) October 12, 2010

Introduction

A modified QuEChERS-type extraction method is used with an additional concentration step to detect 38 anthelmintic (nematicides, flukicides, endectocides) drug residues, consisting of benzimidazoles, avermectins and flukicides in milk. UHPLC-MS/MS instrumentation detects most analytes at < 1µg/kg

Procedure

1. Sample Preparation

- a) Weigh 10.0 grams milk into a 50 mL centrifuge tube
- b) Add IS and allow to sit for 15 minutes
- c) Add 12 mLs acetonitrile (MeCN) and the contents of ECMSSC50CT-MP pouch
- d) Shake vigorously then centrifuge for 12 minutes @ 3,500 rpm

2. Dispersive Sample Cleanup

- a) Add the supernatant to ECMSC1850CT in a 50 mL centrifuge tube
- b) Vortex sample for 30 seconds
- c) Centrifuge for 10 minutes @ 2,500 rpm (1,449 g)
- d) Transfer 6 mL of supernatant to an evaporation tube
- e) Add 0.25 mLs DMSO and vortex for 1 minute
- f) Evaporate the MeCN @ 50° C using a Turbovap® or similar apparatus to 0.25 mLs
- g) Filter extract using 0.2 μm PTFE a syringe filter
- h) Sample is ready for UHPLC analysis

3. Analysis UPLC-MS/MS

- Waters Acquity UPLC system (Milford MA; USA) or equivalent
- Analytical column SS HSS T3 (or equivalent) (100 × 2.1 mm, particle size 1.8 μm) with in-line filter unit and 0.2 μm stainless steel filter
- Maintain column at 60° C
- Pump flow rate of 0.6 mL/min
- Binary gradient:
 - o mobile phase A 0.01% HOAc in water:MeCN (90:10, v/v)
 - mobile phase B 5mM ammonium formate in MeOH:MeCN (75:25 v/v)
 - o Gradient profile:
 - 0 0.5 min, 100% A
 - 5 min, 50% A
 - 7 min, 10% A
 - 8.5 min, 10% A
 - 8.51 min, 0% A
 - 9.5 min, 0% A
 - 9.51 min, 100% A
 - 13 min, 100% A
- Injection volume 5 µL
- Waters Quattro Premier XE triple quadrupole mass spectrometer
- 200 electrospray ionization (ESI) interface
- System control 201 by MassLynx[™] software and data was processed using TargetLynx[™] Software (Waters)
- Parent ion masses are calculated from the elementary compositions

Sigma-Aldrich			
Analyte*	Abbreviation	Analyte	Abbreviation
Abamectin	ABA	Ivermectin	IVER
Albendazole	ABZ	Levamisole	LEVA
Bithionol	BITH	Morantel	MOR
Clorsulon	CLOR	Niclozamide	NICL
Closantel	CLOS	Nitroxynil	NITR
Coumaphos	COUM	Oxfendazole	OFZ
Doramectin	DORA	Oxyclozanide	OXY
Emamectin	EMA	Rafoxanide	RAF
Fenbendazole	FBZ	Thiabendazole	TBZ
Haloxon	HAL		

Standards, Internal Standards, Stock Solutions & Suppliers Sigma-Aldrich

witega Laboratories Berlin-Aldershof GmbH (Berlin, Germany)		
Analyte**	Abbreviation	
Albendazole-2-amino-sulphone	ABZ-NH ₂ -SO ₂	
Albendazole sulphone	ABZ-SO ₂	
Albendazole-sulphoxide	ABZ-SO	
Amino-oxibendazole	OXI-NH ₂	
5-hydroxy-thiabendazole	5-OH-TBZ	
Fenbendazole-sulphone	FBZ-SO ₂	
Triclabendazole	TCB	
Triclabendazole-sulphone	ole-sulphone TCB-SO ₂	
Triclabendazole sulphoxide	TCB-SO	

Witega Laboratories Berlin-Aldershof GmbH (Berlin, Germany)

Deuterated forms of these standards are available from Witega & QUCHEM (Belfast, UK)

Janssen Animal Health (Beerse, Belgium)Analyte***AbbreviationAmino-flubendazoleFLU-NH2Amino-mebendazoleMBZ-NH2Hydroxy-flubendazoleFLU-OHHydroxy-mebendazoleMBZ-OHFlubendazoleFLUMebendazoleMBZ

Greyhound Chromatography and Allied Chemicals, (Merseyside, UK)			
Analyte Abbreviation			
Coumaphos-oxon	COUM-O		

QMX Laboratories (Essex, UK)

Analyte	Abbreviation	
Cambendazole	CAM	
Oxibendazole	OXI	

Merial Animal Health (Lyon, France)

Analyte	Abbreviation
Eprinomectin	EPR

Fort Dodge Animal Health (Princeton, NJ, USA)

· ····	
Analyte	Abbreviation
Moxidectin	MOXI

Other Internal Standards

Internal Standard	Abbreviation & Source	
Selamectin	SELA (Pfizer Animal Health)	
Salicylanide	SALI (Sigma-Aldrich)	
4-nitro-3-(trifluoromethyl)phenol	TFM (Sigma-Aldrich)	
loxynil	IOX (Sigma-Aldrich)	

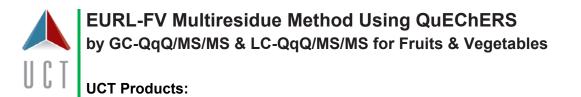
Primary Stock Standard Solutions:

- 4,000 μg/mL from the certified standard materials-- ABZ, ABZ-SO, ABZ-SO2, ABZ-NH2-SO2, FBZ, OFZ, FBZ-SO2, EPR, CLOS, OXY, NITR, CLOR, BITH and MOR
- The remaining standards are prepared at concentrations of 2,000 µg/mL
- All internal standards are prepared at concentration of 1,000 µg/mL
- Avermectins were prepared in MeCN
- Flukicides, CAM, LEVA and TCB metabolites are prepared in MeOH
- Benzimidazoles is prepared in DMSO

Intermediate working standard mix solutions:

- 100 µg/mL for OXY, CLOR, BITH and MOR
- 50 µg/mL in MeOH for the remaining analytes

Prepare working IS as follows:


- 20 μg/mL for SELA and TCB-NH2, 4 μg/mL for LEVA-D5, TBZ164 D3 and IOX
- 2 µg/mL for the remaining analytes in MeOH- D

Primary, intermediate and working standard solutions are stable for at least six months when stored at -20°C

*Adapted and used with permission from Whelen, M., Kinsella, B., "Determination Of Anthelmintic Drug Residues In Milk Using Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry With Rapid Polarity Switching", doi:10.1016/j.chroma.2010.05.007, CHROMA 351049, J. of Chromatography A

Listing of instrument manufacturers and standards suppliers does not constitute endorsement by UCT. Equivalent systems may be used

DCN-012101¬195

ECQUEU750CT 50 mL centrifuge tube contains: (4 grams MgSO₄, 1 gram NaCl, 0.5 grams Na Citrate Dibasic Sesquihydrate, 1 gram Na Citrate Tribasic Dihydrate)

ECMPS15CT 15 mL centrifuge tube contains: (900 mg MgSO₄ & 150 mg PSA) (other configurations are available)

January 17, 2011

Introduction

This summary of the European Union Reference Laboratory Residue method describes a QuEChERS approach for the analysis of 138 pesticides included in the Coordinated Multiannual Community Control Programme for 2010, 2011 and 2012 (Commission Regulation (EC) No 901/2009). Analysis is developed for **avocado, carrot, orange and pepper**.

Samples are prepared according to the Quality Control procedure established in the "<u>Method Validation</u> and Quality Control Procedures for Pesticide Residues Analysis in Food and Feed" (Document No. SANCO/10684/2009)

Procedure

- 1) Sample Preparation (for pesticides analyzed by HPLC-MS/MS)
 - a) Homogenize the sample using a food processor according the typical QuEChERS procedures
 - b) Weigh 10 g ± 0.1 g of sample into a 50 mL centrifuge tube
 - c) Add 10 mL of acetonitrile
 - d) Shake vigorously or vortex for 1 minute to disperse contents
 - e) Centrifuge for 5 minutes @ 4000 rpm

2) Clean-Up

- a) Transfer 6 mL of the supernatant to product ECMPS15CT
- b) Shake vigorously or vortex for 1 minute
- c) Centrifuge @ 6000 rpm for 2 minutes
- d) Transfer 1 mL of extract to a test tube and add 220 μ L of acetonitrile
- e) Using a 0.45µ Teflon syringe filter, transfer extract to an LC injection vial
- f) Sample is ready for HPLC analysis

1A) Sample Preparation (For pesticides analyzed by GC-MS/MS)

- a) Procedure is the same as for HPLC analysis through steps 2) c)
- b) Transfer 1 mL of extract to a test tube
- c) Evaporate to dryness
- d) Add 1 mL of cyclohexane:acetone (9:1) to the dried extract
- e) Shake or vortex until completely dissolved
- f) Filter extract using a 0.45µ Teflon syringe filter into a GC vial
- g) Sample is ready for analysis by GC-MS/MS

3) Instrumentation and Analytical Conditions for the LC/QqQ (MS/MS) System

- LC-MS/MS System 3200 Q TRAP, Applied Biosystems
- Column: Atlantis T3 2.1x100 mm, 3 µm
- Column temperature: 40 °C
 - Mobile phase A: H2O, 2 mM ammonia formate, 0.1 1% formic acid
 - Mobile phase B: methanol
 - Injection volume: 10µL
 - Autosampler temperature: 10° C
 - Analysis time: 18 min.

Time (min)	A (%)	B (5)	Flow (µL/min)
0.0	95	5	300
1.0	95	5	300
1.1	70	30	300
10.0	0	100	300
13.0	0	100	300
13.1	95	5	300

HPLC Flow Rate and Elution Gradient Table

4) Instrumentation and Analytical Conditions for the GC/QqQ (MS/MS)

- GC: Agilent 7890 Series or equivalent
- Autosampler: Agilent 7683 Injector and sample tray
 - Inlet: Splitless
 - Carrier gas: He
 - Inlet pressure: 22.73 psi
 - Inlet temperature: 250°C
 - Injection volume: 1 µL
- Analytical column: Agilent J&W HP-5ms 30 m x 250 µm x 0.25 µm or equivalent
- Retention time locking: Chlorpyrifos methyl locked to 16.596 min
- Spectrometer: Agilent 7000B Series
- Source temperature: 280°C
- Quadrupole temperature: Q1 and Q2 = 150°C
- Collision gas flows: N₂ at 1.5 mL/min, He at 25 mL/min

GC Oven	Temperature	Program
---------	-------------	---------

	Rate (°C/min)	Value (°C)	Hold Time (min)	Run Time (min)
Initial		70	2	2
Ramp 1	25	150	0	5.2
Ramp 2	3	200	0	21.9
Ramp 3	8	280	10	41.9

Spike Level with Method Validation Results

Pesticide	Mean	RSD	Mean	RSD	Technique
	0.01 mg/Kg	0.01 mg/Kg	0.1 mg/Kg	0.1 mg/Kg	w MS/MS
Acephate	88	7	89	3	HPLC
Acetamiprid	84	10	102	4	HPLC
Acrinathrin	103	12	91	13	GC
Aldicarb(RD)	105	13	98	5	HPLC
Amitraz(RD)	89	8	80	7	HPLC
DMPF	84	7	92	5	HPLC
DMF	75	5	103	7	HPLC
Azinphos-methyl	86	17	100	5	HPLC
Azoxystrobin	87	6	104	4	HPLC
Bifenthrin	95	9	92	10	GC

Bitertanol	118	11	103	8	HPLC
Boscalid	98	8	100	4	HPLC
Bromopropylate	95	11	94	12	GC
Bupirimate	96	6	94	10	GC
Buprofezin	87	8	89	8	GC
Cadusafos	88	16	96	6	HPLC
Captan	76	11	85	9	GC
Carbaryl	110	9	97	5	HPLC
Carbendazim(rd)	96	6	95	5	HPLC
Carbofuran(rd)	91	14	103	4	HPLC
Chlorfenvinphos	99	8	86	27	GC
Chlorotalonil	56	4	67	3	GC
Chlorpropham(RD)	99	7	95	7	GC
Chlorpyriphos	98	6	92	7	GC
Chlorpiriphos-methyl	96	5	93	7	GC
Clofentezin(RD)	93	27	88	9	HPLC
Clothianidin	109	8	98	7	HPLC
Cyfluthrin(RD)	104	13	97	16	GC
Cypermethrin(RD)	109	11	109	16	GC
Cyproconazole	97	13	95	5	HPLC
Cyprodinil	97	7	91	9	GC
Deltamethrin	106	14	95	16	GC
Diazinon	99	7	91	7	GC
Dichlofluanid	68	5	71	2	GC
Dichlorvos	85	9	98	6	HPLC
Dicloran	111	17	97	8	GC
Difenoconazole	94	9	99	5	HPLC
Dimethoate(RD)	86	11	99	5	HPLC
Dimethomorph	107	10	97	5	HPLC
Diphenylamine	101	8	86	7	GC
Endosulfan(rd)	92	10	89	10	GC
Epoxiconazole	86	8	101	3	HPLC
Ethion	114	9	102	10	GC
Etofenprox	95	13	94	14	GC
Etoprofos	98	4	92	6	GC
Fenarimol	98	12	90	13	GC
Fenazaquin	89	9	88	11	GC
Fenbutatin oxide		-	78	4	HPLC
Fenbuconazole	106	12	100	5	HPLC
Fenhexamid	79	9	94	5	HPLC
Fenitrothion	116	10	103	7	GC
Fenoxycarb	105	24	98	8	HPLC
Fenpropathrin	99	10	96	11	GC
Fenpropimorph	81	7	99	3	HPLC
Fenthion(RD)	92	7	90	8	GC
Fenthion sulfoxide	86	15	92	10	HPLC
Fenvalerate	96	15	93	15	GC
Fipronil(RD)	98	5	91	11	GC
Fludioxonil	132	3	96	2	HPLC

Flufenoxuron	83	18	110	10	HPLC
Fluquinconazole	94	21	99	7	HPLC
Flusilazole	98	8	93	10	GC
Flutriafol	99	8	102	5	HPLC
Folpet	59	21	65	13	GC
Formetanate(RD)	87	10	95	4	HPLC
Fosthiazate	79	20	114	8	HPLC
Hexaconazole	95	12	96	4	HPLC
Hexythiazox	104	15	97	12	HPLC
Imazalil	88	6	97	6	HPLC
Imidacloprid	96	17	100	6	HPLC
Indoxacarb(RD)	90	40	113	9	HPLC
Iprodione	106	13	94	13	GC
Iprovalicarb	105	8	99	4	HPLC
Kresoxim-methyl	103	14	107	5	HPLC
Lambda-cyhalothrin(RD)	108	12	96	13	GC
Linuron	97	29	99	6	HPLC
Lufenuron	132	16	110	12	HPLC
Malathion(RD)	107	6	100	9	GC
Mepanipyrim(RD)	107	12	95	12	GC
Metalaxyl(rd)	100	12	94	8	GC
Metconazole	101	9	95	4	HPLC
Methamidophos	91	13	89	6	HPLC
Methidathion	115	6	101	9	GC
Methiocarb(RD)	109	33	101	15	HPLC
Methomyl(RD)	109	7	104	5	HPLC
Methoxyfenozide	105	12	99	13	HPLC
Monocrotophos	79	12	98	6	HPLC
Myclobutanil	89	10	90	11	GC
Oxadixyl	94	12	88	9	GC
Oxamyl	96	8	96	5	HPLC
Oxydemeton-methyl(RD)	94	7	97	4	HPLC
Paclobutrazole	94 91	13	100	5	HPLC
Parathion	119	6	100	9	GC
Parathion-methyl(RD)	109	6	101	7	GC
Pencycuron	109	18	100	6	HPLC
Penconazole	97	10	97	5	HPLC
Pendimethalin	116	8	97	8	GC
Permethrin(rd)	98	0 12	90	13	GC
Phenthoate	109	7	93	8	GC
Phosalone	109	14	99 99	0 14	GC GC
Phosmet(RD)	100		99	7	HPLC
Prosmet(RD) Pyraclostrobin	95	10 11	99 110	4	HPLC
Pirimicarb(RD)	95	6	94	4	GC
Pirimicarb(RD) Pirimiphos-methyl	92	8	94	9	GC
Prochloraz(RD)	88	8	94 95	5	HPLC
· ·	94				GC
Procymidone Profenofos		8	93	8	
	100 68	10 9	97 69	10 6	GC
Propamocarb(RD)	00	9	69	0	HPLC

Propargite	112	10	104	7	HPLC
Propiconazole	94	9	91	10	GC
Propyzamide	99	5	96	7	GC
Prothioconazole	78	24	33	12	HPLC
Pyridaben	95	14	92	13	GC
Pyrimethanyl	119	13	95	6	GC
Pyriproxyfen	103	16	95	13	GC
Quinoxyfen	114	8	87	10	HPLC
Spinosad(RD)	97	11	98	4	HPLC
Spiroxamine	124	15	80	15	HPLC
Taufluvalinate	102	13	96	17	GC
Tebuconazole	113	11	95	11	GC
Tebufenozide	124	45	97	13	HPLC
Tebufenpyrad	92	11	94	12	GC
Teflubenzuron	96	31	103	14	HPLC
Tefluthrin	89	5	89	7	GC
Tetraconazole	107	10	91	8	GC
Tetradifon	87	12	90	13	GC
Thiabendazole	92	9	93	8	HPLC
Thiamethoxam(RD)	84	16	101	5	HPLC
Thiacloprid	86	8	105	4	HPLC
Thiophanate-mehyil	69	13	104	6	HPLC
Tolclofos-methyl	91	4	97	5	GC
Tolyfluanid(RD)	69	9	72	10	GC
Triadimenol(RD)	-	-	105	29	HPLC
Triazophos	117	7	102	11	GC
Trichlorfon	75	19	106	7	HPLC
Trifloxystrobin	93	13	103	7	HPLC
Triflumuron	-	-	121	6	HPLC
Trifluralin	92	3	88	6	GC
Triticonazole	104	14	97	5	HPLC
Vinclozolin(RD)	97	7	95	7	GC
Zoxamide	79	17	112	5	HPLC

Summarized and adapted from "EURL-FV Multiresidue Method using QuEChERS followed by GC-QqQ/MS/MS and LC-QqQ/MS/MS for Fruits and Vegetables," European Reference Laboratory in Pesticide Residue, 2009

DCN-117110-201

Extraction of Pyrethrin and Pyrethroid Pesticides from Fish Using the QuEChERS Approach

UCT Products:

EC4MSSA50CT-MP (4000 mg MgSO₄ and 1000 mg sodium acetate) **CUMPSC18CT** (150 mg MgSO₄, 50 mg PSA and 50 mg endcapped C18) January 17, 2011

The QuEChERS approach is used for the determination of trace levels of natural pyrethrins and synthetic pyrethroids (cypermethrin & deltamethrin) in fish.

1. Extraction

- a. Weigh 10 grams of homogenized fish into a 50 mL centrifuge tube
- b. Add 500 ng *cis*-permethrin (phenoxy-¹³C₆) surrogate standard
- c. Add 10 mL 1% acetic acid in acetonitrile
- d. Add the contents of pouch EC4MSSA50CT-MP
- e. Shake vigorously for 1 minute then centrifuge

2. Clean-up, Dispersive Solid-phase (dSPE)

- a. Transfer 1 mL of supernatant to a 2 mL micro-centrifuge tube CUMPSC18CT
- b. Shake for 1 minute then centrifuge
- c. Transfer 0.5 mL of extract to a graduated tube then evaporate to near dryness
- d. Add 50 ng *trans*-permethrin (phenoxy- $^{13}C_6$) and bring to exactly 0.5 mL with trimethyl phosphate (TMP)
- e. Add MgSO₄ to the 0.2 mL mark then vortex
- f. Transfer supernatant to injection vial for analysis

3. Analysis

- a. Use GC/MS in CI mode
- b. Column: HP-5, 30m X 0.32 mm with 0.25 µm film (or equivalent)
- c. Splitless mode @ 240°

GC Oven program:

- 1) Initial 80°C, hold 1 minute
- 2) 50°C/min to 200°C
- 3) 5°C/min to 285°C
- 4) 50°C/min to 325°C, hold 5 minutes
- 5) Transfer line 250°C

MS Conditions:

- a. Source 150°C
- b. Methane reagent gas
- c. Selected Ion Monitoring Mode

Calibration using matrix matching may be required

*Adapted from Roscoe, Veronica, Judge, Judy, Rawn, Dorothea F.K., "Application of the QuEChERS Extraction Method for the Analysis of Pyrethrin and Pyrethroid Pesticides in Fin and non Fin Fish", Health Products and Food Program, Winnipeg, Manitoba and Bureau of Chemical Safety, Food Research Division, Ottawa, Ontario, Canada, Florida Pesticide Residue Workshop, July 2009

DCN-117110-202

QuEChERS-Based LC/MS/MS Method for Multiresidue Pesticide Analysis in Fruits and Vegetables*

UCT Products:

EC4MSSA50CT-MP (4 g anhydrous MgSO₄, 1.0 g Sodium Acetate) **ECMS12CPSA415CT** (1.2 g anhydrous MgSO₄, 400 mg PSA) July 18, 2011

Introduction

A high-throughput, QuEChERS analytical method (LC-MS/MS) is described for the part per trillion (ppt) determination of 191 pesticides in orange, peach, spinach and ginseng. Pesticide classes include carbamates, polar organophosphates, phenylureas, anilides, benzoyl phenylureas, conazoles, macrocyclic lactone, neonicotinoids, strobilurines, and triazines. This method was validated by the U.S. Food and Drug Administration (FDA).

Analyte	CASRN	Analyte	CASRN
Analyte	30560-19-1	Imazalil	35554-44-0
	135410-20-7	Imidacloprid	138261-41-3
Acetamiprid			
Acibenzolar-S-	135158-54-2	Indoxacarb	173584-44-6
Alanycarb	83130-01-2	Ipconazole	125225-28-7
Aldicarb	116-06-3	Iprovalicarb	140923-17-7
Aldicarb sulfone	1646-88-4	Isoprocarb	2631-40-5
Aldicarb sulfoxide	1646-87-3	Isoproturon	34123-59-6
Ametryn	834-12-8	Isoxaflutole	141112-29-0
Aminocarb	2032-59-9	Ivermectin	70288-86-7
Amitraz	33089-61-1	Kresoxim-methyl	143390-89-0
Avermectin B _{1a}	65195-55-3	Linuron	330-55-2
Avermectin B _{1b}	65195-56-4	Lufenuron	103055-07-8
Azoxystrobin	131860-33-8	Mefenacet	73250-68-7
Benalaxyl	71626-11-4	Mepanipyrim	110235-47-7
Bendiocarb	22781-23-3	Mepronil	55814-41-0
Benfuracarb	82560-54-1	Mesotrione	104206-82-8
Benzoximate	29104-30-1	Metalaxyl	57837-19-1
Bifenazate	149877-41-8	Metconazole.1	125116-23-6
Bitertanol	55179-31-2	Methabenzhiazuron	18691-97-9
Boscalid	188425-85-6	Methamidophos	10265-92-6
Bromuconazole 46	116255-48-2	Methiocarb	2032-65-7

Analytes Covered in this Method

Table 1

Bromuconazole 47	116255-48-2	Methomyl	16752-77-5
Bupirimate	41483-43-6	Methoprotryne	841-06-5
Buprofezin	953030-84-7	Methoxyfenozide	161050-58-4
Butafenacil	134605-64-4	Metobromuron	3060-89-7
Butocarboxin	34681-10-2	Metribuzin	21087-64-9
Butoxycarboxin	34681-23-7	Mevinphos-E	813-78-5
Carbaryl	63-25-2	Mevinphos-Z	7786-34-7
Carbendazim	10605-21-7	Mexacarbate	315-18-4
Carbetamide	16118-49-3	Monocrotophos	6923-22-4
Carbofuran	1563-66-2	Monolinuron	1746-81-2
Carbofuran, 3OH-	16655-82-6	Moxidectin	113507-06-5
Carboxin	5234-68-4	Myclobutanil	88671-89-0
Carfentrazone-ethyl	128639-02-1	Neburon	555-37-3
Chlorfluazuron	71422-67-8	Nitenpyram	150824-47-8
Chlorotoluron	15545-48-9	Novaluron	116714-46-6
Chloroxuron	1982-47-4	Nuarimol	63284-71-9
Clethodim	99129-21-2	Omethoate	1113-02-6
Clofentezine	74115-24-5	Oxadixyl	77732-09-3
Clothianidin	210880-92-5	Oxamyl	23135-22-0
Cyazofamid	120116-88-3	Paclobutrazol	76738-62-0
Cycluron	2163-69-1	Penconazole	66246-88-6
Cymoxanil	57966-95-7	Phenmedipham	13684-63-4
Cyproconazole A	94361-06-5	Picoxystrobin	117428-22-5
Cyproconazole B	94361-07-6	Piperonyl butoxide	51-03-6
Cyprodinil	121552-61-2	Pirimicarb	23103-98-2
Desmedipham	13684-56-5	Prochloraz	67747-09-5
Diclobutrazol	75736-33-3	Promecarb	2631-37-0
Dicrotophos	141-66-2	Prometon	1610-18-0
Diethofencarb	87130-20-9	Prometryn	7287-19-6
Difenoconazole	119446-68-3	Propamocarb	24579-73-5
Diflubenzuron	35367-38-5	Propargite	2312-35-8
Dimethoate	60-51-5	Propham	122-42-9
Dimethomorph A	110488-70-5	Propiconazole	60207-90-1
Dimethomorph B	2274-67-1	Propoxur	114-26-1
Dimoxystrobin	149961-52-4	Pymetrozine	123312-89-0
Diniconazole	83657-24-3	Pyracarbolid	24691-76-7
Dioxacarb	6988-21-2	Pyraclostrobin	175013-18-0
Diuron	330-54-1	Pyridaben	96489-71-3
Doramectin	117704-25-3	Pyrimethanil	53112-28-0
Emamectin B _{1a}	155569-91-8	Pyriproxyfen	95737-68-1
Epoxiconazole	133855-98-8	Quinoxyfen	124495-18-7
Eprinomectin B _{1a}	123997-26-2	Rotenone	83-79-4
Etaconazole	60207-93-4	Secbumeton	372137-35-4
Ethiofencarb	29973-13-5	Siduron	26259-45-0
Ethiprole	181587-01-9	Simetryne	1014-70-6
Ethofumesate	26225-79-6	Spinosyn A	168316-95-8
Etoxazole	153233-91-1	Spirodiclofen	148477-71-8
Famoxadone	131807-57-3	Spiromefesin	283594-90-1
Fenamidone	161326-34-7	Spiroxamine	118134-30-8

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

Fenarimol	60168-88-9	Sulfentrazone	122836-35-5
Fenazaquin	120928-09-8	Tebuconazole	107534-96-3
Fenbuconazole	114369-43-6	Tebufenozide	112410-23-8
Fenhexamid	126833-17-8	Tebufenpyrad	119168-77-3
Fenoxycarb	79127-80-3	Tebuthiuron	34014-18-1
Fenpropimorph	67564-91-4	Teflubenzuron	83121-18-0
Fenpyroximate	134098-61-6	Terbumeton	33693-04-8
Fenuron	134098-61-6	Terbutryne	886-50-0
Fludioxinil	131341-86-1	Tetraconazole	112281-77-3
Flufenacet	142459-58-3	Thiabendazole	148-79-8
Flufenoxuron	101463-69-8	Thiacloprid	111988-49-9
Fluometuron	2164-17-2	Thiamethoxam	153719-23-4
Fluoxastrobin	361377-29-9	Thidiazuron	51707-55-2
Fluquinconazole	136426-54-5	Thiobencarb	28249-77-6
Flusilazole	85509-19-9	Thiofanox	39196-18-4
Flutolanil	66332-96-5	Thiophanate-methyl	23564-05-8
Flutriafol	76674-21-0	Triadimefon	43121-43-3
Forchlorfenuron	68157-60-8	Triadimenol	55219-65-3
Formetanate HCI	22259-30-9	Tricyclazole	41814-78-2
Fuberidazole	3878-19-1	Trifloxystrobin	141517-21-7
Furalaxyl	57646-30-7	Triflumizole	99387-89-0
Furathiocarb	65907-30-4	Triflumuron	64628-44-0
Hexaconazole	79983-71-4	Triticonazole	131983-72-7
Hexythiazox	78587-05-0	Vamidothion	2275-23-2
Hydramethylnon	67485-29-4	Zoxamide	156052-68-5

Deuterium	Isotope	Internal	Standards
-----------	---------	----------	-----------

D10-Diazinon	D6-diuron
D6-Dichlorvos	D6-Linuron
D6-Dimethoate	D6-Malathion

CDN-Isotopes (Montreal, QC, Canada)

Analytical Stock Solutions

Prepare separate stock solutions of analytical standards, including the isotope labeled internal standards (ILIS) for individual compounds.

- Weigh 10-75 mg each and dissolve in 10 or 25mL of acetonitrile, methanol, or methanol/water (50:50 v/v) in volumetric flasks
- Prepare intermediate solutions in 100mL volumetric flasks by mixing stock solutions
- Prepare five levels of matrix-matched calibration standards from intermediate solutions by using sample matrix extract and matrix buffer (20 mM ammonium formate) in concentrations of 1, 5, 10, 50, and 100 ppb
- Add the ILIS solution prior to sample preparation and use as an internal standard in the quantitative analysis

Procedures

a. Sample Preparation--orange, peach, spinach

- a) Weigh 10 ± 0.1 g of cryoground sample into 50 mL centrifuge tube
- b) Add 10 mL of 1% acetic acid in acetonitrile and contents of EC4MSSA50CT-MP pouch
- c) Shake by hand then add 200 µL of surrogate solution and a steel ball
- d) Place on a Geno/Grinder shaker (or equivalent) for 1 min @ 1000 strokes/minute
- e) When shaking is complete centrifuge @ 4500 rpm for 5 min
- f) Transfer 9 mL of supernatant to a 15 mL centrifuge tube containing ECMS12CPSA415CT
- g) Shake on Geno/Grinder for 1 min @ 500 strokes/min
- h) Centrifuge @ 4500 rpm for 5 min
- i) Transfer 2.0 mL of supernatant to injection vials for analysis. Filter cloudy extracts using 0.2 nylon or PTFE membrane filter directly into the LC autosampler vials

b. Calibration Standards-- orange, peach, spinach

- a) Prepare matrix-matched calibration standards by mixing 300 μ L of 0.0167, 0.033, 0.067, 0.167, and 0.333 ppm standard solutions. Use 200 μ L of matrix blank extracts and 500 μ L of 20 mM ammonium formate sample buffer
- b) Add 500 µL of sample buffer just prior to sample analysis
- c) Filter cloudy extracts using 0.2 nylon or PTFE membrane filter directly into the LC autosampler vials
- d) Filtered samples should be clear and can be stored in a freezer until analysis

1a) Sample Preparation--ginseng

- a) Prepare ginseng samples by using 1.0 ± 0.05 g of ginseng
- a) Add 10 mL of HPLC-grade water and a steel ball bearing
- b) Shake on a GenoGrinder at 1000 strokes/min for 1 minute
- c) Add 10 mL of 1% acetic acid in acetonitrile, 200 μL of surrogate solution and contents of EC4MSSA50CT-MP pouch
- d) Shake by hand
- e) Place on a Geno/Grinder shaker (or equivalent) for 1 min @ 1000 strokes/minute
- f) When shaking is complete centrifuge @ 4500 rpm for 5 min
- g) Transfer 9 mL of supernatant to a 15 mL centrifuge tube containing ECMS12CPSA415CT
- h) Shake on Geno/Grinder for 1 min @ 500 strokes/min
- i) Centrifuge @ 4500 rpm for 5 min
- j) Transfer 2.0 mL of supernatant to injection vials for analysis. Filter cloudy extracts using 0.2 nylon or PTFE membrane filter directly into the LC autosampler vials

2a) Calibration Standards--ginseng

- a) Prepare matrix-matched calibration standards by adding 100 μL of 0.033, 0.067, 0.167, 0.333,0.8, 1.6 ppm standard solutions to 400 μL of ginseng blank extracts
- b) Add 500 µL of sample matrix buffer just prior to analysis to achieve matrix-matched calibration standards of 1.67, 3.33, 6.67, 16.7, 33.3, 80, and 160 ppb, respectively
- c) Filter using 0.2 m Nylon or PTFE membrane filters
- d) Filtered samples should be clear and can be stored in a freezer until analysis

c. Sample Analysis

- a) HPLC analysis with Shimadzu Prominence/20 series (Columbia, MD) or equivalent interfaced to an ABSciex (Forest City, CA) 4000QTrapmass spectrometer through an ESI interface (IonSpray)
- b) Acquire MRM data in positive ion mode
- c) Identify target pesticides using two specific MRM transitions for each pesticide to achieve an identification point (IP) of 4
- d) Quantify using either external standard calibration (NRCG) or internal standard calibration (FDA and MOE) with ²H₁₀-diazinon as IS
- e) Use N₂ of 99% purity from a nitrogen generator (Parker Balston, Haverhill, MA) in the ESI source and the collision cell
- f) Restek LC column (Bellefonte, PA; Ultra Aqueous, C-18, 100 x 2.1 mm, 3 μm) and guard column (Ultra Aqueous, C-18 cartridges, 10 x 2.1 mm in guard cartridge holder) or equivalent
- g) Curtain, collision, nebulizer, auxiliary gases, and source temperature of the ESI source were set at 15, 6, 35, and 45 psi and 450° C, respectively
- h) Ion spray voltage: 5200
- Declustering potential (DP), collision energy (CE), and collision cell exit potential (CXP) are optimized by direct infusion. The two most intense ion pairs of each analyte are chosen for the analysis. Values of DP, CE, and CXP and the two specific, most intense MRM pairs are listed in Table 3. Principal component analysis (PCA) is carried out using Infometrix Pirouette 4 (Bothell, WA)
- j) Table 2 lists mobile phases, column temperatures, injection volume, flow rate, and LC gradient parameters

HPLC Gradient Elution Parameters				
Mobil Phase	A: 5 mM ammonium formate, 0.1% formic acid in water			
	B : 5 mM ammonium formate, 0.1% formic acid in MeOH			
Column Temperature	35° C			
Flow rate	0.3 mL/min			
Total run time	14.0 min			
Gradient program	10% B at 0 min, hold for 1 min 5% B at 0 min 20% B at 0 min to 98%			
Injection volume	20 µL			

Table 2

Table 3

DP: declustering pot	ential, V; CE: colli	sion ene	ergy, V; CXP: colli	sion ce	ll exit p	otential
Pesticide	Formula	Mol Wt	MRM Transitions #1 & #2	DP	CE	СХР
Carbofuran, 30H-	C ₁₂ H ₁₅ NO ₄	237	238→163 / 181	66	21	16
Acephate	C ₄ H ₁₀ NO ₃ PS	183	184→143 / 49	61	13	4
Acetamiprid	C ₁₀ H ₁₁ N ₃ ClN ₄	223	223→126 / 99	61	29	12
Acibenzolar-S-methyl	C ₈ H ₆ N ₂ OS ₂	210	211→136 / 140	46	39	9
Alanycarb	C ₁₇ H ₂₅ N ₃ O ₄ S ₂	400	400→238 / 91	35	14	4
Aldicarb sulfoxide	C ₇ H ₁₄ N ₂ O ₃ S	206	207→132 / 89	30	10	8
Aldicarb	C ₇ H ₁₄ N ₂ O ₂ S	190	208→116 / 89	36	11	10
Aldicarb sulfone	C ₇ H ₁₄ N ₂ O ₄ S	222	223→86 / 148	52	21	5
Ametryn	C ₉ H ₁₇ N₅S	227	209→152 / 137	71	21	8
Aminocarb	$C_{11}H_{16}N_2O_2$	208	209→152 / 137	71	21	8
Amitraz	C ₁₉ H ₂₃ N ₃	293	294→163 / 107	46	21	4
Avermectin B1a	C ₄₈ H ₇₂ O ₁₄	873	895→751 / 449	176	61	20
Avermectin B1b	C ₄₈ H ₇₀ O ₁₄	859	890→567 / 305	76	23	18
Azoxystrobin	C ₂₂ H ₁₇ N ₃ O ₅	403	404→372 / 344	51	19	4
Benalaxyl	C ₂₀ H ₂₃ NO ₃	325	326→148 / 294	71	31	8
Bendiocarb	C ₁₁ H ₁₃ NO ₄	223	224→109 / 167	61	27	20
Benfuracarb	C ₂₀ H ₃₀ N ₂ O ₅ S	411	411→195 / 252	50	30	4
Benzoximate	C ₁₈ H ₁₈ CINO ₅	364	364→199 / 105	51	13	14
Bifenazate	$C_{17}H_{20}N_2O_3$	300	301→170 / 198	61	29	10
Bitertanol	C ₂₀ H ₂₃ N ₃ O ₂	337	338→70 / 269	51	31	12
Boscalid	C ₁₈ H ₁₂ Cl ₂ N ₂ O	343	343→307 / 140	91	27	4
Bromuconazole 46	C ₁₃ H ₁₂ BrC ₁₂ N ₃ O	377	378→159 / 70	61	37	14
Bromuconazole 47	C ₁₃ H ₁₂ BrC ₁₂ N ₃ O	377	378→159 / 70	61	37	14
Bupirimate	C13H24N4O3S	316	317→166 / 108	86	33	12
Buprofezin	C16H23N3OS	305	306→201 / 116	46	17	4
Butafenacil	C20H18CIF3N2O6	475	492→331 / 349	61	35	20
Butocarboxin	C7H14N2O2S	190	213→75 / 116	50	20	5
Butoxycarboxin	C7H14N2O4S	222	223→106 / 166	45	15	8
Carbaryl	C12H11NO2	201	202→145 / 127	56	15	10
Carbendazim	C9H9N3O2	191	192→160 / 132	80	24	10
Carbetamide	C12H16N2O3	236	237→192 / 118	56	13	12
Carbofuran	C12H15NO3	221	222→123 / 165	66	31	22
Carboxin	C12H13NO2S	235	484→452 / 285	66	23	14
Carfentrazone-ethyl	C13H10Cl2F3N3O3	412	412→346 / 366	81	31	4
Chlorfluazuron	C20H9Cl3F5N3O3	541	540→158 / 383	91	27	4
Chlorotoluron	C10H13CIN2O	213	213→72 / 46	61	31	4
Chloroxuron	C15H15CINO2	291	291→72 / 218	65	30	4
Clethodim	C17H26CINO3S	360	360→164 / 268	61	29	10
Clofentezine	C14H8Cl2N4	303	303→138 / 102	61	23	8
Clothianidin	C6H8CIN5O2S	250	250→169 / 132	51	17	4
Cyazofamid	C13H13CIN4O2S	325	325→108 / 261	61	21	10
Cycluron	C13H13CIN402S C11H22N2O	198	199→89 / 72	50	21	4
Cymoxanil	C7H10N4O3	198	199→09772	60	13	4
Cyproconazole A	C15H18CIN3O	292	<u>292→70 / 125</u>	66	39	12
Cyproconazole B	C15H18CIN3O	292	292→70 / 125	66	39	12
Cyprodinil	C14H15N3	225	226→93 / 77	101	51	16
Desmedipham	C16H16N2O4	300	318→182 / 136	41	19	12
Diclobutrazol	C15H19Cl2N3O	328	328→70 / 158	81	49	12
Dicrotophos	C8H16NO5P	237	238→112 / 193	66	19	8
Diethofencarb	C14H21NO4	267	268→226 / 124	61	15	14
Difenoconazole	C19H17Cl2N3O3	406	406→251 / 253	81	37	16

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

Diffubenzuron Cu+Hc/EN-No. 311 311158 / 141 71 23 10 Dimethomorph A Cu+Hc/No.P 229 220 - 199 / 125 50 14 15 Dimethomorph B Cu+Hc/No.P 388 388 - 301 / 165 66 25 4 Dimethomorph B Cu+Hc/No.PO 326 327207 / 16 40 15 4 Dinconacole Cu+Hc/No.PO 326 327707 / 158 86 11 10 Divacarb Cu+Hc/Ch-No. 233 223727 / 72 56 33 4 Doramectin B- Cu+Hc/Ch-No. 233 223727 / 749 71 65 15 Fongyroximate Cu+Hc/Ch-No. 330 330121 / 101 66 29 10 Eprionemetin B- Cu+Hc/Ch-No. 328 328159 / 105 76 27 12 2 Etaconazole Cu+Hc/Ch-No. 328 328151 / 125 81 29 24 Etaconazole Cu+Hc/Ch-No. 327 327 <th>Diflutenzuren</th> <th></th> <th>211</th> <th>211 150 / 141</th> <th>74</th> <th>22</th> <th>10</th>	Diflutenzuren		211	211 150 / 141	74	22	10
Dimethomorph B C:rHtzCINO- 388 388-301/165 66 25 4 Dimotystrobin C:rHtzCINO- 388 388-301/165 66 25 4 Dimotystrobin C:rHtzCINO- 326 327-205/116 40 15 4 Dimotonazole C:rHtzCINO- 223 224-167/123 51 13 10 Duron C:rHtzCINO- 233 233-72/72 56 33 4 Doramectin C:rHtzCINO- 233 233-72/72 56 23 4 Emamectin C:rHtzCINO- 380 330-137 72 56 23 4 Emamectin C:rHtzCINO- 380 330-121/101 66 29 10 Eprinomectin 27 12 Etacazole 27 12 Etacazole 330 330-132/158 81 29 24 Ethofencata 37 397-350/255 81 29 24 Ethofencata 33 31 15 44 44 Et							-
Dimetomorph B Cartta:NOA 388 388-301/165 66 25 4 Dinoxystrobin Cartta:NOA 326 327-205/116 40 115 4 Dinoxotario Cartta:NOA 228 327-205/116 40 15 4 Divacarb Cartta:NOA 233 233-72/72 56 33 4 Doramectin Cartta:NOA 422 422-366/135 56 23 4 Empyroximate Cartta:NOA 422 422-366/135 56 23 4 Emproximate Cartta:NOA 422 422-366/135 56 23 4 Emproximate Cartta:NOA 422 422-366/135 56 23 4 Environmectin B*a Cartta:NOA 303 303-121/101 66 37 10 Etaconazole Cartta:NOA 225 226-106/164 41 21 4 Etaconazole Cartta:NOA 379 392-331/238 31 15 4							
Dimoxystrobin C:eH+2kNO2 326 327-205/116 40 16 4 Dixacarb C:H+1xNO4 328-70/1168 86 51 12 Dixacarb C:H+1xNO4 223 223-467/123 51 13 10 DorameCin C:H+1xNO4 233 233-72/72 56 33 4 Emamactin C:H+1xNO4 422 422-366/138 56 23 4 Emamactin C:H+1xNO4 848 686-156/424 111 51 10 Eprinomectin C:H+1xNO4 930 330-121/101 66 29 10 Eprinomectin B+2 C:H+1xNO5 328 228-106/144 11 14 4 Ethofencarb C:H+1xNO5 286 287-121/258 81 29 24 Ethofencarb C:H+1xNO5 311 312-92/266 63 91 16 Femaryatine C:H+1xNO5 311 312-92/266 63 16 131 4 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th></td<>							-
Diniconazolo CurHus/DA 236 326 - 70 / 158 86 51 12 Diaxoardh CurHus/DA 233 233 - 72 / 72 56 33 4 Doramectin CurHus/DA 423 223 - 777 / 1449 71 66 15 Fenpyroximate CurHus/DA 422 422 - 366 / 135 56 23 4 Epayroximate CurHus/DFNO4 422 422 - 366 / 135 56 23 4 Epayroximate CurHus/DFNO4 422 422 - 366 / 135 56 23 4 Epayroximate CurHus/DFNO4 422 422 442 442 444 14 14 12 Etayroximate CurHus/DS 328 328 - 152 / 255 81 29 24 Ethorone CurHus/DS 259 360 - 341 / 57 76 45 4 Femayroximatio CurHus/DN 311 312 - 427 / 259 81 23 8 Etoyroximate CurHus/DN 331							
Dioxearb C:rtH::NO. 223 224rt67/123 51 13 10 Doramectin C:atH::OLA 899 921777/149 71 65 15 Enamectin Bta C:atH::No.0. 422 422366/135 56 23 4 Enamectin Bta C:atH::NO.0. 422 422366/135 56 23 4 Epricomectin Bta C:atH::NO.0. 330 330121/101 66 29 10 Epricomectin Bta C:atH::NO.2. 328 328159/205 46 37 10 Etoisencab C:atH::NO.2. 328 228159/205 81 29 24 Etoisencab C:atH::NO.2. 225 228106/144 121 4 Ethiofencab C:atH::NO.2. 397 397-350/255 81 29 24 Etoisencab C:atH::NO.2. 359 360141/157 76 45 4 Femaxidone C:atH::NO.2. 331 331-286 81 31 4							
Diuron Catha0u 233 233-72/72 56 33 4 Doramectin Catha0u 899 921-777/1499 71 65 15 Fenpyroximate Catha0u0 422 422-366/135 56 23 4 Epakiconazole Catha0u0 330-121/101 66 29 10 Eprinomectin B1a Catha0u0 330-121/101 66 29 10 Ethofencarb Catha0u0 328-159/205 46 37 10 Ethofencarb Catha0u0 328-159/205 44 12 4 Ethoracole Catha0u0 324 328-159/205 81 29 24 Ethoracole Catha0u0 374 392-331/238 31 15 4 Femaxadone Catha0u0 374 392-331/238 31 14 Fenazaquin Catha0u0 311 312-92/236 66 31 4 Fenazaquin Catha0u0 302 302-48/116 66							
Doramectin CatherNo1s 899 921-777/1489 711 65 15 Fenpyroximate CatherNo1s 886 886-158/82 111 51 10 Epoxtconazole CriftIs/Olis 886 886-158/82 111 51 10 Epoxtconazole CriftIs/Olis 330 330-121/101 66 29 10 Etostonazole CatherNo1s 232 328-159/205 46 37 10 Etostonazole CatherNo2s 226 226-106/164 41 21 4 Ethofencarb CatherNo2s 286 287-427/259 81 23 8 Etoxazole CatherNo2s 311 312-36/258 81 24 4 Fenazaquin CatherNo2s 311 312-36/258 81 23 8 Etoxazole CatherNo2s 311 312-36/258 81 41 81 Fenazaquin CatherNo2s 331 337-324/758 66 55 18 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
Fenpyroximate Carltr-NiO4 422 422-366/135 56 23 4 Emamectin B1s Carltr-NiO1 868 886-158/82 111 51 10 Eprinomactin B1s Carltr-NiO1 914 914-168/154 76 27 12 Ethorsonacle Carltr-SchNO2 328 330-121/101 66 29 10 Ethorsonacle Carltr-SchNO2 328 328-159/125 81 29 24 Ethorsonacle Carltr-NO2 286 287-121/259 81 23 8 Etoxazole Carltr-NO2 359 360-141/57 76 45 4 Fanoxadone Carltr-NO2 311 312-92/236 66 33 16 Fenazaquin Carltr-NO2 301 302-97/155 66 35 18 Fenosconazole Carltr-NO2 302 302-97/155 66 35 18 Fenazaquin Carltr-NO2 303 304-147/107 11 25 12 <th></th> <th>C9H10Cl2N2O</th> <th></th> <th></th> <th></th> <th></th> <th></th>		C9H10Cl2N2O					
Emametrin B: CertHac/FNO 886 886–158/82 111 51 10 Epoxiconazole CirtHac/FNO 330 330–121/101 66 29 10 Eprinomectin B: CirtHac/FNO 328 328–159/205 46 37 10 Ethorenzole CirtHac/FNO2 328 328–159/205 46 37 10 Ethorenzole CirtHac/CirFNOS 397 397–350/255 81 29 24 Ethorenzole CirtHac/CirFNOS 396 267–121/125 81 23 8 Etoxazole CirtHac/CirFNOS 359 360–141/57 76 45 4 Fenamidone CirtHac/CirNO 331 310–226/81 61 31 4 Fenazaquin CirtHac/CirNO 306 307–161/147 71 25 12 Fenatoxanid CirtHac/CirNO 301 302–48/116 66 35 18 Fenatoranid CirtHac/CirNO 303 304–147/146 56 25							15
Epoxiconazole C:rhth:SCIFNoO 330 330121/101 66 29 10 Eprinomectin B1:a C:shth:SOD:a 914 914186/154 76 27 12 Ethorazole C:shth:SOL:FNNOS 328 328159/205 46 37 10 Ethorazole C:shth:CLFNNOS 327 330/-350/255 81 29 24 Ethorazole C:shth:CLFNNOS 328 328350/255 81 29 24 Ethorazole C:shth:CLFNNOS 329 330121/1289 81 23 8 Etoxazole C:shth:CLFNNOS 311 31292/236 66 39 16 Femarimol C:rhtr:NNOS 311 31292/236 66 39 16 Fenazoquin C:sht:NOS 331 331288/16 61 31 4 Fenazonia C:sht:NOS 301 30297/55 66 35 18 Fenazonia C:sht:NO 303 304147/1717 66 39	Fenpyroximate	C24H27N3O4	422	422→366 / 135	56	23	4
Eprinometrin B ₁₀ Control Science 914 914-186/154 76 27 12 Etaconazole CintHisOLoNo2 328 328-159/205 46 37 10 Ethiofencarb CintHisOLoS 225 226-106/164 41 21 4 Ethiofencarb CintHisOLoS 226 226-106/164 41 21 4 Ethiofencarb CintHisOLoS 226 226-106/164 41 23 8 Etoxazole CintHisOLoS 286 287-12/1258 81 23 8 Femanxidone CintHisOLoS 311 31292/236 66 39 16 Fenazaquin CintHisOLO 331 331287/81 61 11 4 Fenazaquin CintHisOLO 302 30297/55 66 35 18 Fenexorab CintHisOLO 301 30288/116 66 31 6 Fenexorab CintHisOLO 304 364-147/117 66 25 4	Emamectin B _{1a}	C49H75NO13	886	886→158 / 82	111	51	10
Efaconazole CirkHisChNO2 328 328159/205 46 37 10 Ethiofencarb CirkHisOCS 225 226106/164 41 21 4 Ethiorole CirkHisOLSAVOS 397 397350/255 81 29 24 Ethormesate CirkHisOLSAVOS 397 397350/255 81 29 24 Ethormesate CirkHisOLSAVOS 311 312959/331/238 311 15 4 Fenanidone CirkHisOLOS 311 312288/116 66 39 16 Fenarimol CirkHisOLO 301 307461/1477 71 25 12 Fenazaquin CirkHisOLO 302 307-461/1477 71 25 12 Fenaziquin CirkHisOLO 302 30237/55 66 35 18 Fenaziquin CirkHisOLO 303 304417/117 66 39 4 Fenaziquin CirkHisFANO 248 266-229/227 41 23 <	Epoxiconazole	C17H13CIFN3O	330	330→121 / 101	66	29	10
Ethiofencarb ChithsNO2S 225 226–106/164 41 21 4 Ethiproie ChithsQ2S 397 397-350/255 81 29 24 Ethofumesate ChithsQ2S 286 287-4121/259 81 23 8 Etoxazole ChithsQ2A 359 360-141/157 76 45 4 Famoxadone ChithsQ2A 311 312-92/236 66 39 16 Fenarmoid ChithsQA 306 307-4161/147 71 25 12 Fenarmoid ChithsQA 306 307-4161/147 71 25 12 Fenarsonid ChithsQA 302 302-97/55 66 35 18 Fenarsonid ChithsANO 303 304-417/117 66 39 4 Fenarsonid ChithSANO 303 304-417/117 66 39 4 Fenarsonid ChithSANO 363 364-4152/194 51 29 10 Fludo	Eprinomectin B _{1a}	C50H75NO14	914	914→186 / 154	76	27	12
Ethigrole C:hH:GEFNLOS 397 397-350/255 81 29 24 Ethofumesate C:hH:GCS 286 287-121/259 81 23 8 Etoxazole C:hH:GCS 286 287-121/259 81 23 8 Etoxazole C:hH:GCN 374 392-331/238 31 15 4 Fenamione C:rH:R/SO 311 312-922/236 66 39 16 Fenamione C:rH:R/SO 331 331-268/81 61 31 4 Fenazaquin C:aH:2N-O 306 307-161/147 71 25 12 Fenazonazole C:rH:r/CIN/2 302 302-97/55 66 35 18 Fenoxycarb C:rH:r/CIN/2 302 302-97/55 66 35 18 Fenoxycarb C:rH:r/CIN/2 302 302-97/55 66 31 6 Fludioxinil C:rH:r/CIN/2 302 324-152/146 56 24 4 <td< th=""><th>Etaconazole</th><th>C14H15Cl2N3O2</th><th>328</th><th>328→159 / 205</th><th>46</th><th>37</th><th>10</th></td<>	Etaconazole	C14H15Cl2N3O2	328	328→159 / 205	46	37	10
Ethigrole ChHkGlpFNkOS 397 397-350/255 81 29 24 Ethofumesate ChHkGlpFNkOS 286 287-121/259 81 23 8 Etoxazole ChHkGlpS 286 287-121/259 81 23 8 Etoxazole ChHkGlpS 374 392-331/238 31 15 4 Fenarimol ChHkGlpS 331 331-268/81 61 31 4 Fenazaquin CaHarkONS 331 331-268/81 61 31 4 Fenazaquin CaHarkONS 302 302-37/55 66 35 18 Fenoxycarb ChHkrONA 301 30288/116 66 31 6 Fenoxycarb ChHkrONA 303 364-152/146 56 25 4 Fludioxini ChHkrONA 489 489 489 49 10 Fludioxini ChHkrONA 303 364-152/146 56 28 4 Fludioxini	Ethiofencarb	C11H15NO2S	225	226→106 / 164	41	21	4
Ethofumesate CuHuQoS 286 287-121/259 81 23 8 Etoxazole CuHu2F2NQ2 359 360-1141/57 76 45 4 Famoxadone CuHu3F2NQ2 359 360-1141/57 76 45 4 Fenamidone CuHu7ANQS 311 312-92/236 66 39 16 Fenarimol CuHu7CINAQ 331 331-268/81 61 31 4 Fenazaquin CuHu7CINQ 300 307-161/147 71 25 12 Fenarimol CuHu7CINQ 302 302-97/55 66 35 18 Fenaroxach CuHu7NQ 301 302-97/55 66 35 18 Fenaroxach CuHu7NQ 301 302-97/55 66 35 14 Fenaroxach CuHu7NQ 301 302-97/55 66 35 14 Fenaroxach CuHu7NQ 301 302-97/144 51 29 10 Flufanationi	Ethiprole		397		81	29	24
Etoxazole Cz.Hta/E/NO2 359 360141/57 76 45 4 Famoxadone Cz.Hta/NO4 374 392331/238 31 15 4 Fenarimol Cr/Htr/NoOS 311 31292/236 66 39 16 Fenarimol Cr/Htr/NoOS 311 31292/236 66 39 16 Fenaryout Cz/Hta/NOO 306 3071161/147 71 25 12 Fenbouconazole CuHtr/CNA 337 337124/70 81 41 8 Fenoxycarb Cr/Htr/NOA 301 30287/15 66 35 18 Fenoxycarb CuHtr/CNA 303 304147/117 66 31 6 Fenoxycarb CuHtr/SNO2 248 266229/227 41 23 14 Fludioxill CuHtr/SNO2 343 364-4152/194 51 29 100 Flutronxuron CuHtr/SNO 363 364-35/2194 51 28 4 <			286		81	23	8
Famoxadone C22H18N2O4 374 392-331 / 238 31 15 4 Fenamidone C17M17N3OS 311 31292 / 236 66 39 16 Fenarimol C17M17N3OS 331 331-268 / 81 61 31 4 Fenazaquin CapHzrNaO 306 307-161 / 147 71 25 12 Fenbuconazole CisH1rClAv2 302 30297 / 55 66 35 18 Fenoxycarb CirH1rNO4 301 302-487 / 155 66 31 6 Fenorpoimorph CapHaNO 303 304-147 / 117 66 39 4 Fenuron CaH42NO 164 165-72 / 46 56 25 4 Fludioxinil CirH-GFNAO2 248 266-422 / 227 241 23 14 Fludioxinil CirH-GFNAO2 248 266-427 / 188 55 28 4 Fludioxinil CirH-GFNAO2 322 233-72 / 46 71 37 12 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
Fenamidone C17H17N2OS 311 31292/236 66 39 16 Fenarimol C17N12ClaN2O 331 331268/81 61 31 4 Fenazaquin C2nd12/N2O 336 337161/147 71 25 12 Fenbuconazole C19H1rCIN4 337 337124/70 81 41 8 Fenbuconazole C19H1rCIN4 332 33297/55 66 35 18 Fenoxycarb C1rH1rNO4 301 30297/55 66 35 4 Fenuron CaH1xNO 104 105-72/46 56 25 4 Fludioxinil C12H47NO 104 105-72/46 71 37 12 Fludioxinil C12H47NO 489 489-4158/141 86 29 10 Fluorencoro C2HH1rCIFNAO 376 376-307/349 71 33 4 Fluorencoro C14H4rEINAO 184 248-4129/93. 52 25 4							
Fenaranol Cr/N+rClzN-O 331 331268/81 61 31 4 Fenazaquin CzeHz/NZO 306 307161/147 71 25 12 Fenbuconazole CieHr-CIN4 337 337124/70 81 41 8 Fenbuxomad CieHr-CIN4 301 30298/755 66 35 18 Fenoxycarb CirHisNO 301 30298/7117 66 39 4 Fenuron CahtaNO 303 304147/117 66 39 4 Fludioxinil CirHisNO 164 165727/246 56 25 4 Fludenacet CirHisNO 248 266229/227 411 23 14 Fluoneturon CirHisNO 323 323-72/46 71 37 12 Fluoneturon CirHisNO 323 323-72/46 71 33 4 Fluoneturon CirHisEN2O 376 376-307/349 71 33 4 Fl							
Fenazaquin C20H2N2O 306 307161/147 71 25 12 Fenbuconazole CnHtr/CIN4 337 337124/70 81 41 8 Fenbexamid CuHtr/CIN02 302 30297/55 66 35 18 Fenoxycarb CuHtr/CIN02 301 30297/55 66 35 18 Fenuron CuHtr/CIN02 303 304147/117 66 39 4 Fenuron CuHtr/SNO2 248 266229/227 41 23 14 Flufenacet CraHtr/SNO2 363 364152/194 51 29 10 Fluorencor CuHtr/FNO2 232 233-72/46 71 37 12 Fluosastrobin C2rHtr/CIN2 489 489158/141 86 28 4 Fluolanil CuHtr/FNO2 323 324-262/142 76 27 16 Fluotanil CuHtr/FNO2 323 324-262/142 76 27 16							
Fenbuconazole C1xH1r/CINu 337 337-124/70 81 41 8 Fenbexamid C1xH1r/CINU2 302 302-97/55 66 35 18 Fenoxycarb C1xH1r/CINU2 301 302-48/116 66 31 6 Fenorycarb C2xH3NO 303 304-147/117 66 39 4 Fludioxinil C2xH3NO 104 165-72/46 56 25 4 Fludioxinil C2xH3NO 104 165-72/46 71 23 14 Fluenexuron C2xH1r/FN2O2 248 266-229/27 41 23 14 Fluorexuron C2xH1r/FN2O2 363 364-152/194 51 29 10 Fluorexuron C2xH1r/FN2O3 459 459-427/188 55 28 4 Fluorexuron C2xH1r/FN2O3 376 376-307/349 71 33 4 Fluorexuron CaH1r/FN2O 323 324-262/242 76 27 16							
Fenhexamid C1:H1:rCl2NO2 302 302-97/55 66 35 18 Fenoxycarb C1:H1:sNO4 301 302-488/116 66 31 6 Fenoropimorph CaH1:sNO 303 304-417/117 66 39 4 Fenuron CaH1:sNO 248 266-229/227 41 23 14 Flufenacet CuH1:sFANO2 248 266-429/227 41 29 10 Flurenacet CuH1:sFANO2 363 364-4152/194 51 29 10 Fluorenturon CaH1:sFANO2 232 233-72/46 71 37 12 Fluorenturon CaH1:sFANO 376 376-307/349 71 33 4 Fluorenturon CaH1:sFANO 301 302-70/128 66 37 12 Flutolanil C1:H1:sFANO 301 302-97/128 66 37 12 Forchorfenuron C1:H1:sFANO 301 302-95/120 60 21 12							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Fenpropimorph C2dH3NO 303 304147 / 117 66 39 4 Fenuron CaHH2N2O 164 16572 / 46 56 25 4 Fludioxinil CraHF2N2O 248 266229 / 227 41 23 14 Flufenacet CraHH3F4N3O2S 363 364152 / 194 51 29 10 Flufenacet CraHH3F4N3O2S 363 364352 / 194 51 29 10 Fluorenactor CraHH3FAN3O2S 363 364352 / 194 51 29 10 Fluorenactor CraHH3CH2NAO 232 23372 / 46 71 37 12 Fluorenactor CraH4F2NAO 376 376307 / 349 71 33 4 Flusiazole CriH4F2NAO 301 30270 / 123 66 37 12 Forchorfenuron Cr2H4F3NAO 301 30270 / 123 66 41 18 Furatiocarb CriH4FNAO2 248 248129 / 93 52 25							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Fludioxinil C12HaF2N2O2 248 266-229/227 41 23 14 Flufenacet C14H1sF3N2O2 363 364-152/194 51 29 10 Flugenoxuron C2rH1sFN2O3 489 489-158/194 51 29 10 Fluometuron CorH1rFN2O 232 233-772/46 71 37 12 Fluoxastrobin C2rH1sCIFN4Os 459 449-457/188 55 28 4 Fluginconazole C1sHaE12FN4O 376 376-307/349 71 33 4 Flusilazole C1sH1sF2NSG 376 376-307/349 71 33 4 Flusilazole C1sH1sF2NO2 323 324-262/242 76 27 16 Flutidiani C1sH1sF2NO 184 185-157/65 81 33 14 FurthioCarb C1sH1sN3O2 221 222-165/120 60 21 12 FurthioCarb C1sH2xNO5S 382 383-4195/252 76 27 12 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
Flufenacet $C_{14}H_{15}F_4N_3O_2S$ 363 $364 \rightarrow 152/194$ 51 29 10 Flufenoxuron $C_{21}H_1C[F_6N_2O_3$ 489 $489 \rightarrow 158/141$ 86 29 10 Fluometuron $C_{10}H_1F_5N_2O_3$ 232 $233 \rightarrow 72/46$ 71 37 12 Fluometuron $C_{10}H_1F_2N_2O_3$ 459 $459 \rightarrow 427/188$ 55 28 4 Fluometuron $C_{10}H_1S_1N_3Si$ 315 $316 \rightarrow 247/185$ 81 27 16 Fluometuron $C_{10}H_1S_1N_3Si$ 315 $316 \rightarrow 247/185$ 81 27 16 Fluometuron $C_{10}H_1S_1N_3Si$ 315 $316 \rightarrow 247/185$ 81 27 16 Fluometuron $C_{10}H_1S_1N_3O_2$ 223 $224 \rightarrow 262/242$ 76 27 16 Fluometuron $C_{10}H_1S_1N_3O_2$ 221 $222 \rightarrow 165/120$ 60 21 12 Formetanate HCI $C_{11}H_1SN_3O_2$ 221 $222 \rightarrow 165/120$ 60 21 12 Fuberidazole $C_{11}H_1SN_3O_2$ 221 $222 \rightarrow 165/120$ 60 21 12 Furatiocarb $C_{10}H_2N_2O_3$ 361 $302 \rightarrow 95/242$ 56 41 18 Furatiocarb $C_{10}H_2N_2O_3$ 361 $314 \rightarrow 170/159$ 56 41 12 Hexafouron $C_{10}H_2N_2O_3$ 363 $353 \rightarrow 228/186$ 61 23 14 Hexafouron $C_{10}H_2C_1N_2O_2$ 256 $256 \rightarrow 209/175$ 61 23 14 Hexafouron							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C12H10CIN3O					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fuberidazole	C11H8N2O	184	185→157 / 65	81	33	14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Furalaxyl	C17H19NO4	301	302→95 / 242	56	41	18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Furathiocarb	C18H26N2O5S	382	383→195 / 252	76	27	12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hexaconazole	C14H17Cl2N3O	314	314→70 / 159	56	41	12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hexaflumuron	C16H8Cl2F6N2O3		461→158 / 141		25	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C17H21CIN2O2S	353	353→228 / 168	61	23	14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hydramethylnon	C25H24F6N4	494	495→323 / 151	146	45	20
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Imazalil		297		66		14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Imidacloprid						12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Mepanipyrim C14H13N3 223 224→106 / 77 86 37 8 Mepronil C17H19NO2 269 270→119 / 228 76 33 8 Mesotrione C14H13NO7S 339 357→228 / 288 60 31 9							
Mepronil C17H19NO2 269 270→119 / 228 76 33 8 Mesotrione C14H13NO7S 339 357→228 / 288 60 31 9							
Mesotrione C14H13NO7S 339 357→228 / 288 60 31 9							
WIETAIAXYI $U_{15}H_{21}NU_4$ $2/9$ $280 \rightarrow 220/192$ 61 21 14							
	wetalaxyl	U15H21NU4	279	280→220 / 192	61	21	14

		0.40				4.0
Metconazole.1	C17H22CIN3O	319	320→70 / 125	81	51	12
Methabenzhiazuron	C10H11N3OS	221	222→165 / 150	51	21	4
Methamidophos	C ₂ H ₈ NO ₂ PS	141	142→94 / 125	55	20	4
Methiocarb	C11H15NO2S	225	226→169 / 121	61	13	12
Methomyl	C5H10N2O2S	162	163→88 / 106	35	12	5
Methoprotryne	C11H21N₅OS	271	272→240 / 198	50	27	4
Methoxyfenozide	C22H28N2O3	368	369→149 / 313	56	25	10
Metobromuron	C9H11BrN2O2	259	259→170 / 148	56	23	4
Metribuzin	C8H14N4OS	214	215→84 / 187	71	29	4
Mevinphos-Z	C7H13O6P	224	225→127 / 193	55	20	8
Mevinphos-E	C7H13O6P	224	225→127 / 193	55	20	8
Mexacarbate	C12H18N2O2	222	223→166 / 151	66	23	12
Monocrotophos	C7H14NO5P	223	224→127 / 98	51	23	12
Monolinuron	C9H11CIN2O2	215	215→126 / 99	51	23	4
Moxidectin	C37H53NO8	640	662→549 / 467	90	45	16
Myclobutanil	C15H17CIN4	289	289→70 / 125	71	37	12
Neburon	C12H16Cl2N2O	275	275→88 / 114	56	23	4
Nitenpyram	C11H15CIN4O2	273	271→225 / 126	51	17	14
Novaluron	C17H9CIF8N2O4	493	493→158 / 141	71	27	4
Nuarimol	C17H9CIF8N2O4 C17H12CIFN2O	315	315→252 / 81	81	31	16
Omethoate	C17H12CIFIN2O C5H12NO4PS	213	315→252781 214→1247182	46	29	4
				40 61	29 17	4
Oxadixyl	C14H18N2O4	278 219	279→219 / 132 237→72 / 90	36	25	4
Oxamyl	C7H13N3O3S					
Paclobutrazol	C15H20CIN3O	294	294→70 / 125	66	49	12
Penconazole	C13H15Cl2N3	284	284→159 / 70	71	39	10
Phenmedipham	C16H16N2O4	300	301→136 / 168	50	26	4
Picoxystrobin	C18H16F3NO4	367	368→145 / 205	56	27	4
Piperonyl butoxide	C19H30O5	338	356→177 / 119	51	19	10
Pirimicarb	C11H18N4O2	238	239→72 / 182	66	35	12
Prochloraz	C15H16Cl3N3O2	377	376→308 / 70	46	17	10
Promecarb	C12H17NO2	207	208→109 / 151	36	23	8
Prometon	C10H19N5O	225	226→142 / 86	76	33	10
Prometryn	C10H19N5S	241	242→200 / 158	71	19	4
Propamocarb	C9H20N2O2	188	189→102 / 144	61	25	8
Propargite	C19H26O4S	350	368→231 / 175	46	15	14
Propham	C10H13NO2	179	180→138 / 120	36	13	10
Propiconazole	C15H17Cl2N3O2	342	342→159 / 69	61	39	10
Propoxur	C11H15NO3	209	210→111 / 168	39	19	6
Pymetrozine	C10H11H5O	217	218→105 / 78	71	27	4
Pyracarbolid	C13H15NO2	217	218→125 / 97	61	27	8
Pyraclostrobin	C19H18CIN3O4	388	388→194 / 163	31	19	4
Pyridaben	C19H25CIN2OS	365	365→147 / 309	46	31	4
Pyrimethanil	C12H13N3	199	200→107 / 82	71	33	4
Pyriproxyfen	C20H19NO3	321	322→96 / 185	46	21	4
Quinoxyfen	C ₁₅ H ₈ Cl ₂ FNO	308	308→162 / 197	81	65	10
Rotenone	C23H22O6	394	395→213 / 192	91	33	14
Secbumeton	C10H15N5O	225	226→170 / 100	50	35	4
Siduron	C14H20N2O	232	233→137 / 94	66	21	4
Simetryne	C8H15N5S	213	214→124 / 144	51	27	4
Spinosyn A	C41H65NO10	732	748→142 / 98	86	45	8
Spirodiclofen	C21H24Cl2O4	411	411→313 / 71	71	17	8
Spiromefesin	C23H30O4	370	371→273 / 255	71	19	8
Spiroxamine	C18H35NO2	297	298→144 / 100	76	29	12
Sulfentrazone	C11H10Cl2F2N4O3S	387	387→307 / 146	81	23	4
Tebuconazole	C11H10Cl2F2IN4O3S C16H22CIN3O	308	$308 \rightarrow 70 / 125$	81	49	12
Tebufenozide	C16H22CIN3O C22H28N2O2	352	353→133 / 297	51	25	12
				71		
Tebufenpyrad Tebutbiuren	C18H24CIN3O	334	334→117 / 145		47	4
Tebuthiuron	C9H16N4OS	228	229→172 / 116	46	21	4
Teflubenzuron	C14H6Cl2F4N2O2	381	381→141 / 158	66	53	4
Terbumeton	C10H19N5O	225	226→170 / 100	76	27	12
Terbutryne	C10H19N5S	241	242→186 / 68	71	27	12
Tetraconazole	C13H11CI2F4N3O	372	372→159 / 70	76	45	10

Thiabendazole	C10H7N3S	201	202→175 / 131	85	35	12
Thiacloprid	C10H9CIN4S	253	253→126 / 99	71	31	10
Thiamethoxam	C8H10CIN5O3S	292	292→211 / 181	61	19	12
Thidiazuron	C9H8N4OS	220	221→102 / 127	66	21	4
Thiobencarb	C12H16CINOS	258	258→125 / 89	56	27	8
Thiofanox	C9H18N2O2S	218	219→76 / 57	36	20	8
Thiophanate-methyl	C12H14N4O4S2	342	343→151 / 311	61	29	14
Triadimefon	C14H16CIN3O2	294	294→197 / 225	66	23	14
Triadimenol	C14H18CIN3O2	296	296→70 / 227	46	31	12
Tricyclazole	C9H7N3S	189	190→163 / 136	81	33	10
Trifloxystrobin	C20H19F3N2O4	408	409→186 / 206	31	23	4
Triflumizole	C15H15CIF3N3O	346	346→278 / 73	51	15	8
Triflumuron	C15H10CIF3N2O3	359	359→156 / 139	51	23	4
Triticonazole	C17H20CIN3O	318	318→70 / 125	66	45	12
Vamidothion	C8H18NO4PS2	287	288→146 / 118	61	19	10
Zoxamide	C14H16Cl3NO2	337	336→187 / 159	45	35	15
D10-Diazinon	C12D10H11N2O3PS	314	315→170	50	29	4
D6-Dimethoate	$C_5D_6H_6NO_3PS_2$	235	236→131	50	30	4
D6-diuron	C9D6H4Cl2N2O	239	239→78	90	30	4
D6-Linuron	C9D6H4Cl2N2O2	255	255→166	90	30	4
D6-Dichlorvos	C4D6H1Cl2O4P	227	227→115	70	27	4
D6-Malathion	C10D6H13O6PS2	330	337→291	55	12	4

*Summarized with permission from Wong, Jon, Hao, Chunyan, Zhang, Kai, et al., J. Agric. Food Chem. 2010, 58, 5897–5903 5897, DOI:10.1021/jf903849n

Listing of instrument manufacturers does not constitute endorsement by UCT

DCN-118170-222

Modified QuEChERS Procedure for Analysis of Bisphenol A in Canned Food Products

UCT Products:

ECQUEU750CT-MP (each pouch contains 4000 mg MgSO₄, 1000 mg NaCl, 500 mg Na citrate dibasic sesquihydrate, 1000 mg Na citrate tribasic)
ECPSAC1856 (500 mg of PSA and 500 mg endcapped C18, 6 mL cartridge)
ECPSACB6 (400 mg PSA and 200 mg GCB, 6 mL cartridge)
SMTBSTFA-1-1 (MTBSTFA w/1% TBDMCS)
ECSS10K (Sodium sulfate, anhydrous, ACS Grade, Granular 60 Mesh)
July 29, 2011

Procedure

(Developed for tuna, baby food, pineapple and tea)

1) Sample Preparation

- a) Weigh 10 g homogenized sample into a 50 mL QuEChERS tube
- b) Spike with 25 ng/g internal standard: Bisphenol A d16 (BPA d16)
- c) Add 10 mL MeCN
- d) Add the contents of ECQUEU750CT-MP
- e) Shake vigorously for 2 min
- f) Centrifuge at 3500 rpm for 3 min

2) Clean-up (products without pigments)

- a) Attach ECPSAC1856 to the vacuum manifold
- b) Add 3 g muffled Na₂SO₄ to the cartridge
- c) Rinse with 2 x 2 mL MeCN
- d) Insert test tubes into the manifold
- e) Load 5 mL of the supernatant to the cartridge
- f) Turn on vacuum to collect extract dropwise
- g) Transfer 1 mL of cleaned extract into a 5 mL test tube
- h) Concentrate to dryness by N2 at 35 °C

3) Clean-up (products with pigments)

- a) Attach ECPSACB6 to the vacuum manifold
- b) Add 3 g muffled Na_2SO_4 to the cartridge
- c) Rinse with 2 x 2 mL MeCN
- d) Insert test tubes into the manifold
- e) Load 5 mL of the supernatant to the cartridge
- f) Turn on vacuum to collect extract dropwise
- g) Transfer 1 mL of cleaned extract into a 5 mL test tube
- h) Concentrate to dryness by N2 at 35 °C

4) Derivatization

- a) Add 50 µL pyridine to the dried test tube and vortex
- b) Add 50 µL MTBSTFA/1%TBDMCS and cap the test tube
- c) Heat at 75° C for 30 min
- d) Cool then concentrate to dryness by N_2 at 35 °C
- e) Reconstitute with 75 µL toluene and 25 µL surrogate: 2 ppm triphenyl phosphate (TPP)
- f) Vortex
- g) Transfer to auto-sampler vial with 100 μL insert
- h) Inject 1 µL to GC/MS

5) GC/MS Analysis

GC/MS

• Agilent 6890N GC coupled with 5975C MSD, equipped with 7683 auto sampler. Chemstation software for data acquisition and analysis. Equivalent instrumentation may be used

Injector

• 1 µL splitless injection at 250 °C, split vent of 30 mL/min at 1 min

Liner

• 4 mm splitless gooseneck, 4mmID x 6.5mmOD x 78.5mm (UCT #: GCLGN4MM)

Glass wool for liner

Restek[®] Deactivated Wool

GC capillary column

• Restek[®] Rxi-5sil MS 30m x 0.25mm x 0.25µm

Oven temperature program

- Initial oven temperature of 100 °C, hold for 1 min
- Ramp at 20 °C/min. to 300 °C, hold for 1 min
- Ramp at 40 °C/min. to 320 °C, hold for 2.5 min

Total run time 15 min. Data acquisition begins at 9 min

Carrier Gas

• He constant flow 1.2 mL/min

MSD Conditions

• Aux temperature: 280 °C, MS Source: 230 °C, MS Quad: 150 °C

Simultaneous Scan/SIM:

Scan range: 50-500

SIM:

Group 1: 9.0 min.: 326.1, 325.1 (Triphenyl phosphate)

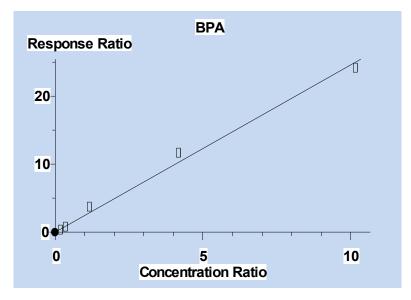
Group 2: 10.5 min.: 441.3, 456.3, 442.3 (derivatized: Bisphenol A-2TBDMS)

452.4, 470.4, 453.4 (derivatized: Bisphenol A d16-2TBDMS)

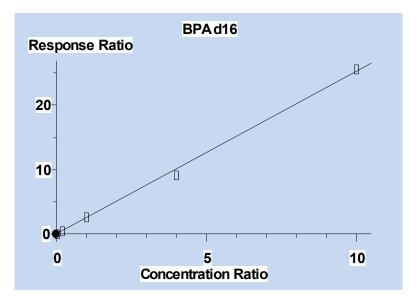
Dwell time: 100 ms for all ions

Matrix matched curves are generated with the adjustment of the concentrations in the blank and baby food sample

Experimental Data

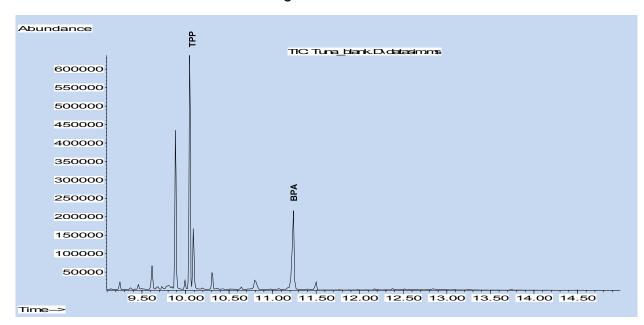

Calculations

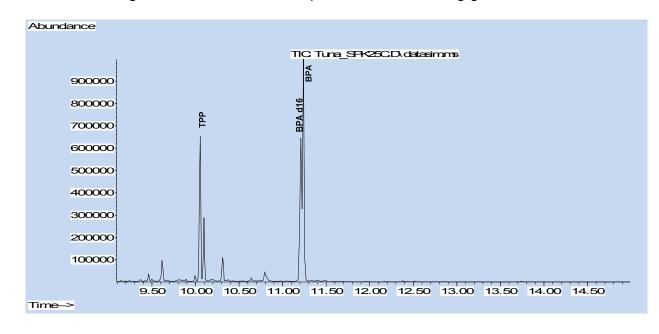
 C_{blank} and C_{sample} were calculated by equations 1 and 2:


Equation 1: $A_{sample}/A_{blank} = (C_{sample} + C_{blank})*R_1\%/C_{blank}*R_1\%$

Equation 2: A_{spiked sample}/A_{sample} =(C_{sample}+C_{blank}+C_{spike})*R₂%/(C_{sample}+C_{blank})*R₂%

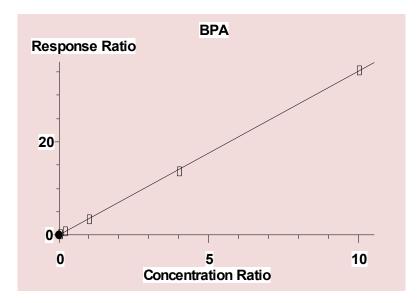
Tuna: Tuna in pure olive oil (3oz can)


BPA: Linear dynamic range: 1-500 ng/mL (conc. per 1 mL extract) R²=0.9933

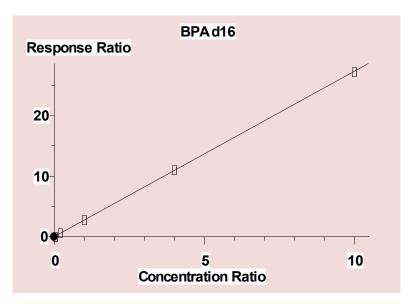

BPA d16: Linear dynamic range: 1-500 ng/mL (conc. per 1 mL extract) R²=0.9983

Bisphenol A in Canned Tuna

	BPA in blank	BPA in tuna	Tuna fortified with 25 ng/g BPA	Tuna fortified with 50 ng/g BPA
Analyte	Conc. (ng/g) (ng/mL)	Conc. (ng/g)	Recovery% ± RSD% (n=3)	Recovery% ± RSD% (n=3)
BPA d16	0	0	74.0 ± 6.4	76.5 ± 5.9
BPA	0.56	6.64	86.6 ± 7.5	100 ± 8.0



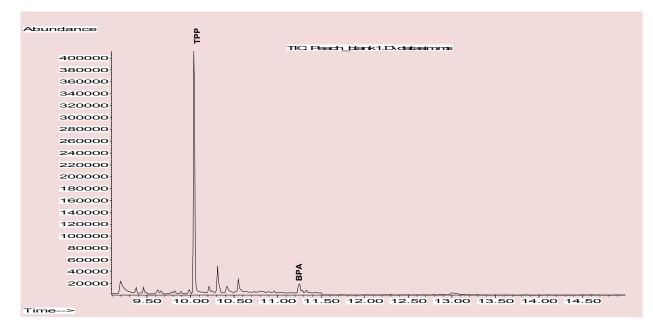
Chromatogram of Canned Tuna



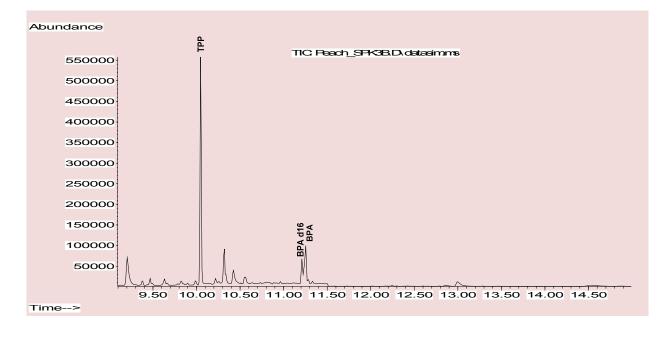
Chromatogram of canned tuna sample fortified with 25 ng/g BPA d16 and BPA

Baby Food: Peaches, Stage 2

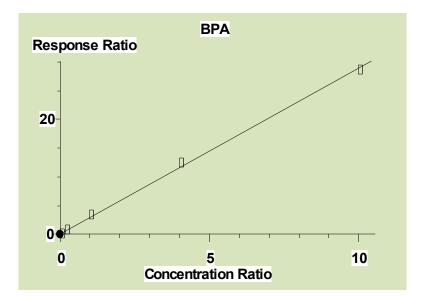
BPA: Linear dynamic range: 1-500 ng/mL (conc. per 1 mL extract) R²=0.9998

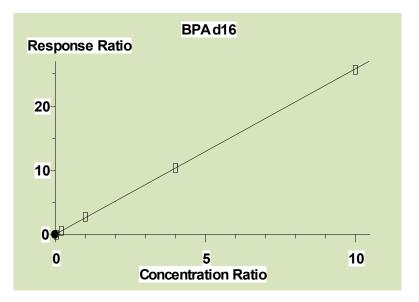


BPA d16: Linear dynamic range: 1-500 ng/mL (conc. per 1 mL extract) R²=0.9999

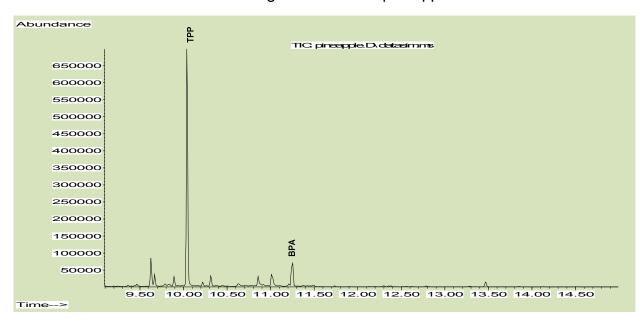

	BPA in blank (ng/g)	BPA in baby food (ng/g)	Baby food fortified with 3 ng/g BPA	Baby food fortified with 10 ng/g BPA
Analyte	Conc. (ng/mL)	Conc. (ng/g)	Recovery% ± RSD% (n=3)	Recovery% ± RSD% (n=3)
BPA d16	0	0	98.0 ± 4.7	98.8 ± 7.7
BPA	0.33	< 1 ng/g (0.33 ng/g)	99.2 ± 2.0	95.3 ± 11

Bisphenol A in Baby Food

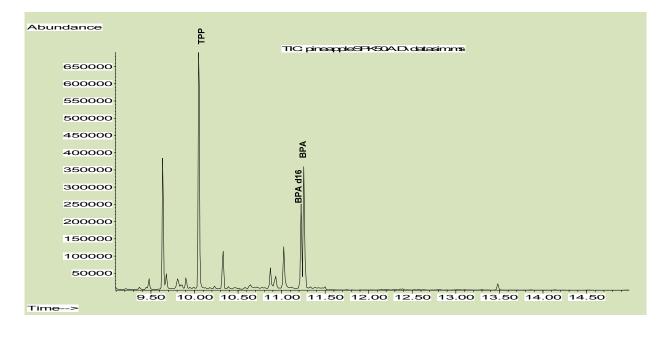

Chromatogram of baby food


Chromatogram of baby food sample fortified with 3 ng/g BPA d16 and BPA

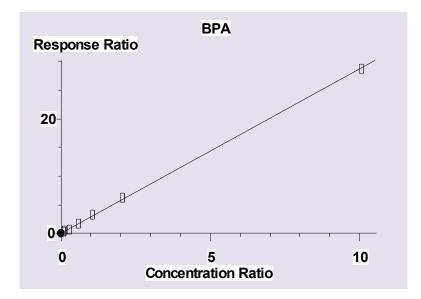
Pineapple: crushed pineapple in 100% pineapple juice (canned), pH=3


BPA: Linear dynamic range: 1-500 ng/mL (conc. per 1 mL extract) R²=0.9989

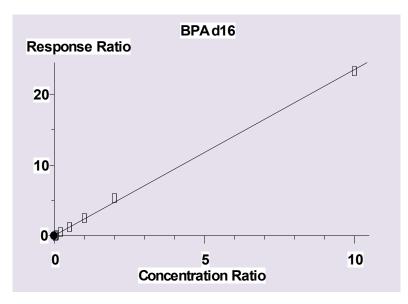
BPA d16: Linear dynamic range: 1-500 ng/mL (conc. per 1 mL extract) R²=0.9999


Bisphenol A in Canned Pineapple

	BPA in blank	BPA in pineapple	Pineapple fortified with 5 ng/g BPA	Pineapple fortified with 25 ng/g BPA
Analyte	Conc. (ng/g) (ng/mL)	Conc. (ng/g)	Recovery% ± RSD% (n=3)	Recovery% ± RSD% (n=3)
BPA d16	0	0	112 ± 2.3	93.4 ± 6.1
BPA	0.33	1.65	112 ± 5.7	96.1 ± 5.7

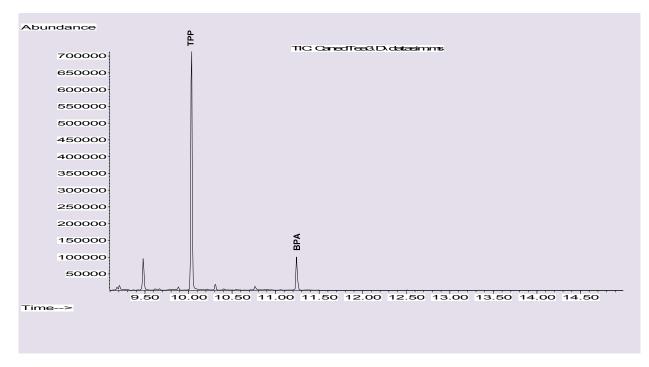


Chromatogram of canned pineapple

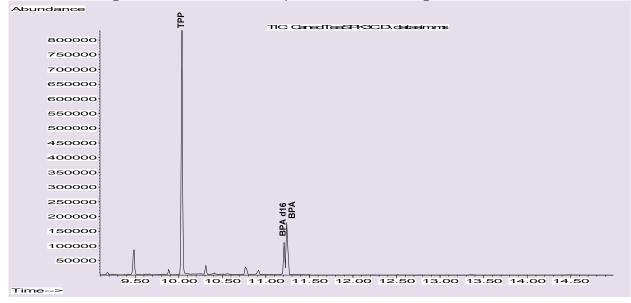

Chromatogram of canned pineapple sample fortified with 5 ng/g BPA d16 and BPA

Tea Sample: Green Tea with Ginseng and Honey (canned), pH=3.5

BPA: Linear dynamic range: 1-500 ng/mL (conc. per1 mL extract) R²=0.9998



BPA d16: Linear dynamic range: 1-500 ng/mL (conc. per 1 mL extract) R²=0.9993


Bisphenol A in Canned Tea

	BPA in blank (ng/g)	BPA in tea (ng/g) (ng/g)sample	Tea fortified with 3 ng/mL BPA	Tea fortified with 10 ng/mL BPA
Analyte	Conc. (ng/mL)	Conc. (ng/mL)	Recovery% ± RSD% (n=3)	Recovery% ± RSD% (n=3)
BPA d16	0	0	120 ± 5.9	107 ± 2.7
BPA	0.46	2.28	104 ± 8.2	90.0 ± 5.8

Chromatogram of canned tea sample

Chromatogram of canned tea sample fortified with 3 ng/mL BPA d16 and BPA

DCN-119270-225

QuEChERS Sample Preparation For The Analysis Of Pesticide Residues In Olives*

UCT Products:

ECMSSC50CT-MP (4 g MgSO₄, 1.0 g NaCl) ECQUEU122CT (2 mL centrifuge tube, 150 mg MgSO₄, 50 mg PSA, 50 mg C18 and 50 mg GCB) CUMPSC1875CB2CT – For better recovery of planar pesticides (2 mL centrifuge tube, 150 mg MgSO₄, 50 mg PSA, 50 mg C18, 7.5 mg GCB) April 1, 2011

Summary

This application is a summary of the original paper "Evaluation of the QuEChERS sample preparation approach for the analysis for pesticide residues in olives"*. It describes the use of QuEChERS for the extraction and cleanup of 16 pesticide residues contained in olives. LC-MS/MS with positive ESI was used for pesticides that are difficult to detect by GC-MS. Matrix matched calibration standards were used to compensate for matrix effects. The method achieves acceptable quantitative recoveries of 70–109% with RSDs <20% for DSI-GC-MS and 88–130% with RSDs <10% for LC-MS/MS, and LOQ at or below the regulatory maximum residue limits. Analyte protectants were used with DSI to improve analyte peak shapes and intensities.

Analyte	CASRN
Ometholate	1113-02-6
Dimethoate	60-51-5
Simazine	122-34-9
Diazinon	65863-03-8
p,p'-DDE	82413-20-5
Diuron	56449-18-4
Carbaryl	63-25-2
Malathion	121-75-5
Fenthion	55-38-9
Methidathion	950-37-8
Napropamide	15299-99-7
Oxyfluorfen	42874-03-3
Carfentrazone-ethyl	128639-02-1
Phosmet	732-11-6
Pyriproxyfen	95737-68-1
Deltamethrin	64121-95-5

Analytes Covered in this Method

1) Sample Extraction

- a) Weigh 10 g of homogenized sample into a 50 mL centrifuge tube
- b) Add 10 mL of acetonitrile (MeCN)
- c) Add contents of ECMSSC50CT-MP
- d) Shake vigorously by hand for 1 minute
- e) Centrifuge@ 3450 rcf for 1 minute

2) Dispersive Clean-Up

- a) Transfer 1 mL the supernatant to a micro-centrifuge tube ECQUEU122CT or CUMPSC1875CB2CT
- b) Mix for 20 s
- c) Centrifuge @ 3450 rcf for 1 minute
- d) Transfer 400µL of supernatant to an autosampler vial
- e) Add 25 µL of TPP solution (10 g/mL triphenylphosphate on MeCN with 1.6% formic acid
- f) Shake for 5 s
- g) Extract is ready for analysis

3) Automated DSI-GC-MS Analysis

GC-MS was performed using an Agilent (Little Falls, DE, USA) 5890 Series II GC and 5972 MS instrument. Injection was performed using a Combi-PAL autosampler (CTC Analytics, Zwingen, Switzerland) using second generation automated DSI accessory (Linex) in combination with an Optic 3 PTV (Atas-GL International BV, Veldhoven, NL)

Note: Equivalent instrumentation and analytical columns can be used

Analyte Protectant Solution

(95% or better purity, prepare at 10:1:1 mg/mL in 7:3 water/MeCN, Sigma or Fluka)

- 3-ethoxy-1,2-propanediol
- D-sorbitol
- L-gulonic acid
- c-lactone

A quality check standard solution of 16 μ g/mL triphenylphosphate (TPP) is prepared in MeCN containing 1.6% formic acid (FA)

For analysis by DSI-GC-MS, 20 μ L of the analyte protectant solution was added to all the final extracts and matrix-matched calibration standards by transfer of 400 μ L of extract into an autosampler vial and adding 25 μ L of TPP solution

Conditions:

- Injection volume 10 µL
- 100° C (held 3.5 min with 50:1 split ratio)
- Ramp at 5° C/s to 280°C (use splitless for 3.5 min, then 50:1 split until 9 min, then change split flow to 20:1 and cool injector temperature to 150° C)

GC Separation:

- Varian VF-5 EZ-guard column (30 m x 0.25 mm id x 0.25 lm film thickness) with an integrated retention gap (5 m x 0.25 mm) at the inlet and an additional 1 m of uncoated capillary at the MS entrance
- He carrier gas @ 1 mL/ min

Oven temperature program:

- Start at 3.5 min (after sample introduction)
- 80° C hold for 3.5 min
- Ramp to 230° C at 108° C/min
- Then ramp to 300° C at 45° C/min, hold for 10 min.
- MS transfer line temperature at 290° C
- Electron ionization (EI) at –70 eV in SIM and full-scan (50–600 m/z) modes in different experiments

Agilent Chemstation for data acquisition/processing and GC-MS control, and Cycle Composer and Atas Evolution software are used to control the automated DSI process and PTV. The pesticide analytes in GC-MS and SIM ions are shown in the table below

GC-MS SIM Conditions for the Monitored Pesticides

Pesticide	Start time (min)	t _R (min)	m/z (% relative abundance)	
			Quantitation ion	Qualifier ions
Dimethoate	4.5	15.89	87 (100)	125 (45), 93 (54), 58 (19)
Simazine		16.00	201 (78)	173 (41), 186 (51), 158 (25)
Diazinon	16.09	16.18	179 (100)	137 (98), 304 (47), 152 (70)
Diuron		16.52	72 (100)	232 (38), 234 (26), 187 (11)
Carbaryl	17.49	17.70	144 (100)	115 (33), 116 (26), 145 (15)
Malathion		18.03	173 (94)	125 (100), 93 (93),127 (75)
Fenthion	18.1	18.27	278 (100)	125 (37), 109 (33), 79 (19)
Methidathion	19.05	19.29	145 (88)	93 (40), 125 (27), 302 (19)
Napropamide	13.39	19.58	271 (26)	72 (100), 128 (63)
p,p'-DDE		19.367	318 (64)	246 (100), 248 (64), 316 (56)
Oxyfluorfen		19.71	361 (38)	252 (100), 300 (35), 280 (14)
Carfentrazone- ethyl	20	20.28	312 (100)	330 (65), 340 (63), 376 (31)
ТРР	20.38	20.96	326 (100)	325 (87). 77 (88). 215 (20)
Phosmet		21.17	160 (100)	133 (15), 104 (15), 193 (4)
Pyriproxyfen	21.30	21.50	136 (100)	226 (12), 185 (6)
Deltamethrin	22.8	23.59	253 (85)	181 (100), 251 (44), 152 (20)

4) LC-MS/MS Analysis

Suggested Instrumentation: Agilent 1100 HPLC (consisting of vacuum degasser, autosampler Model WPALS, and a binary pump) equipped with a Prodigy ODS-3 (150 mm x 3 mm) and 5 μ particle size analytical column coupled to a ODS–C18 (4 mm x 2 mm and 5 μ particle size) guard column from Phenomenex (Torrance, CA, USA).

- Column temperature: 30° C
- Injection volume 5 µl.
- Mobile phase A water, B MeCN, both with 0.1% FA
- Gradient program:
 - o Flow rate 0.3 mL/min
 - $\circ~~$ 25% solvent B linear gradient to 100% over the first 5 min
 - \circ Hold for 7 min until 12 min
 - o 11-min postrun column wash

The LC system is connected to an API 3000 triple-quadrupole mass spectrometer (Applied Biosystems, Toronto, Canada) operated in ESI positive mode. Optimizations of the mass analyzer parameters were done by infusion of 1μ g/mL analyte solutions at 10 μ L/min with a syringe pump (Harvard Apparatus, Holliston, MA, USA) using the autotune function.

Note: Equivalent instrumentation and analytical columns can be used

Final MS/MS conditions include:

- N₂ pressure 55 psi
- nebulizer gas setting 14
- curtain gas setting 11
- collision gas setting 12
- 4200 V ionspray voltage
- ESI temperature 525° C
- focusing potential 100 V
- entrance potential 10 V
- 0.15 s dwell time

The pesticide analytes by LC-MS/MS are shown in the table below with respective analytical ions

LC-MS/MS Conditions for the Monitored Pesticides

Pesticide	Start time (min)	t _R (min)	Precursor ion (m/z)	Product ions (m/z)
Omethoate	2.5	2.68	214.0	183.2, 125.2
Dimethoate	5	6.83	230.0	199.1, 125.1
Simazine	7.6	7.98	202.0	124.2, 132.2
Carbaryl		8.48	202.2	145.1, 127.1
Diuron		8.67	233.1	72.2, 160.1
Phosmet	9	9.27	318.0	160.2, 133.2
Methidathion		9.28	303.0	145.1, 85.1
Malathion		9.64	331.0	127.2, 285.2
TPP	9.8	10.18	327.0	77.2, 152.0

(Quantitation ion is shown as first mass)

*Adapted and used by permission from Cunha, Sara C., Lehotay, Steven J., Mastovska, Katerina, Fernandes, Jos O., Beatriz, Maria, Oliveira, P. P., Sep. Sci. 2007, 30, 620 – 632, DOI 10.1002/jssc.200600410

Listing of instrument manufacturers and standards suppliers does not constitute endorsement by UCT. Equivalent systems may be used

DCN-111040-211

Determination of Carbendazim in Orange Juice Using QuEChERS with LC/MS/MS Detection

UCT Part Numbers:

ECQUEU750CT-MP: Pouch contains: 4000 mg MgSO₄, 1000 mg NaCl, 500 mg Na citrate dibasic sesquihydrate and 1000 mg Na citrate tribasic dehydrate **CUMPSC18CT:** 2 mL centrifuge tube contains: 150 mg MgSO₄, 50 mg PSA, 50 mg endcapped C18 February 1, 2012

Introduction

The planar fungicide carbendazim (CASRN *10605-21-7*) can be used to control mold on citrus crops but is not approved for use in the US or on imported products. Concentrations in citrus products can be rapidly and accurately determined using a QuEChERS extraction with dSPE cleanup. LOD and LOQ for this method are 0.4 and 1.4 ng/mL, respectively.

Procedure

1) Extraction

- a) Add 10 mL of orange juice to a 50 mL centrifuge tube
- b) Add 10 mL acetonitrile then vortex
- c) Add the contents of ECQUEU750CT-MP
- d) Shake vigorously for 1 min
- e) Centrifuge at 5000 rpm for 5 min at 20° C
- f) Supernatant is ready for cleanup

2) Dispersive Cleanup

- a) Add 1 mL of supernatant to CUMPSC18CT tube
- b) Shake sample(s) for 1 min
- c) Centrifuge at 10,000 rpm for 5 min
- d) Transfer 0.5 mL to 2 mL autosampler vial
- e) Add 25 µL 1 ppm TPP, vortex
- f) Samples are ready for analysis

3) LC/MS//MS Analysis

Instrumentation: Thermo Accela HPLC with autosampler

LC Conditions

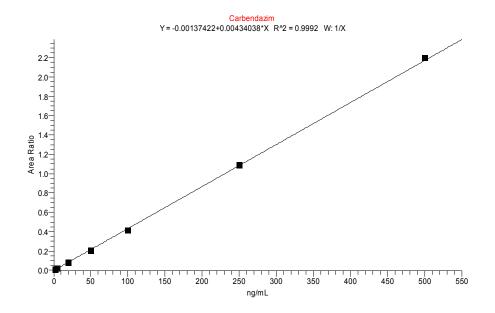
Column	Guard column: Restek C18, 2.1 x 20 mm Column: Sepax HP-C18, 2.1 x 100 mm, 3 µm, 120 Å
Column Temperature	Ambient
Injection Volume	10μL at 15° C
Mobile Phase	A: 0.1% formic acid in water B: 0.1% formic acid in methanol
Flow Rate	200 μL/min

LC Gradient Program

MS Conditions

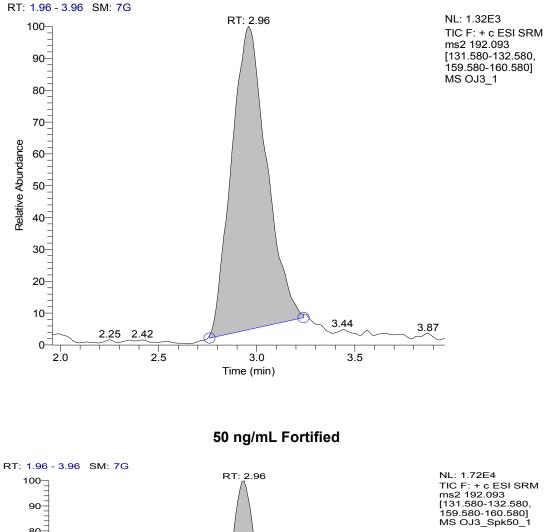
Thermo TSQ Vantage MS

Time	% A	%B
0	50	50
3	0	100
8	0	100
9	50	50
14	50	50

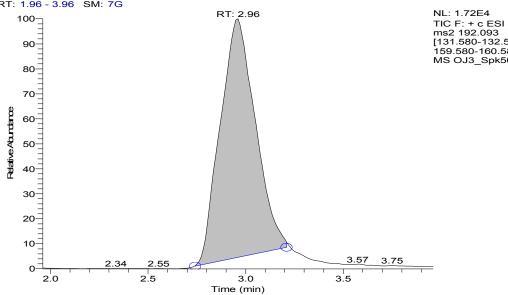

lon source:	Heated ESI
lon polarity:	ESI +
Spray voltage:	3000 V
Sheath gas pressure:	N ₂ @ 40 psi
Auxiliary gas pressure:	N ₂ @ 10 psi
lon transfer capillary temperature:	350 °C
Scan type:	SRM (0-10 min)
CID conditions:	Ar @ 1.5 mTorr

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007	• 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

Compound	Parent	Product ion 1	CE	Product ion 2	CE	S-Lens	Dwell time (s)
Carbendazim	192.093	132.080	29	160.080	17	81	0.20
TPP (IS)	327.093	77.020	37	152.070	33	98	0.10


Matrix Matched Calibration Curve

Dynamic linearity range is from 2 to 500 ng/mL with R^2 =0.9992



Accuracy and Precision of Carbendazim Data from Spiked Orange Juice Sample

Fortified (ng/mL)	Recovery%	RSD % n=4
10	96.6	4.5
50	100.2	3.4
250	103.7	2.1

Chromatogram of Orange Juice Sample and Fortified at 50 ng/mL

ÖÔÞË₽FŒŒË₽₩₩

UCT, LLC • 2731 Bartram Road • Bristol, PA 19007 • 800.385.3153 • 215.781.9255 • www.unitedchem.com • Email: methods@unitedchem.com ©UCT,LLC 2012 • All rights reserved

Determination of Pesticides in Strawberries by QuEChERS Extraction, Quick QuEChERS Clean-up, and GC/MS Detection

UCT Part Numbers:

ECQUEU750CT-MP: 4000 mg magnesium sulfate, 1000 mg sodium chloride, 500 mg sodium citrate dibasic sesquihydrate, 1000 mg sodium citrate tribasic dihydrate

ECPURMPSMC: Quick QuEChERS push thru cartridge contains: 110 mg MgSO₄, 180 mg PSA July 12, 2012

Procedure

1) Extraction

- a) Add homogenized and hydrated strawberry sample (10 g) to a 50-mL centrifuge tube
- b) Add 10 mL acetonitrile, vortex 30 sec
- c) Add the contents of pouch (ECQUEU750CT-MP)
- d) Shake vigorously for 1 min
- e) Centrifuge at >1500 rcf for 1 min at 20° C
- f) Supernatant is ready for clean-up

2) Quick QuEChERS Clean-up

- a) Load 1 mL of supernatant into a disposable syringe
- b) Pass the supernatant slowly through Quick QuEChERS cartridge (ECPURMPSMC)
- c) Collect 0.5 mL cleaned extract into a GC vial
- d) Add triphenyl phosphate as internal standard (200 ng/mL)
- e) Samples are ready for GC/MS analysis

Clean-up of Strawberry Extract with Quick QuEChERS

3) GC/MS Detection

Thermo TRACE GC Ultra gas chromatograph coupled with a Thermo ISQ single quadrupole mass spectrometer and TriPlus autosampler

Column	Rtx-5MS, 30 m x 0.25 mm x 0.25 μm
Carrier Gas	Helium
Flow Rate	1.2 mL/min
Ramp	55°C for 1 min, 20°C/min to 300°C, hold for 4 min
Injector Temperature	220°C
Injection Volume	1 μL in splitless mode
Ion Source Temperature	200°C
Transfer Line Temperature	250°C
MS Operation	SIM and Full Scan

GC/MS Conditions (Using a matrix matched calibration)

Compound	Fortified at 10 ng/mL		Fortified at 50 ng/mL		Fortified at 100 ng/mL	
	Recovery%	RSD% (n=4)	Recovery%	RSD% (n=4)	Recovery%	RSD% (n=4)
Methamidophos	93.7	3.4	81.6	5.8	84.2	3.5
Carbendazim	105.7	10.8	100.1	10.6	90.5	7.6
Thiabendazole	91.2	4.9	87.9	6.8	85.0	4.0
Pyrimethanil	112.2	2.7	107.0	3.2	102.8	4.9
Cyprodinil	104.3	3.2	99.9	6.1	100.2	4.9
Diazinone	104.9	5.6	102.0	6.6	99.2	6.8
Pyrazophos	99.9	4.0	96.6	5.6	91.3	4.1
Chlorpyrifos	91.7	4.6	99.5	5.2	97.2	3.8

Accuracy and Precision Data

DCN-217280-241

Clean-Up and Fractionation

www.unitedchem.com

Clean-Up of Organochlorine Pesticides and PCB Extracts Using FLORISIL[®]

Part #: EUFLSA1M6 or EUFLS1M6 February 3, 2009

This application is designed to remove polar interferences from organochlorine pesticide and PCB extracts in hexane prior to analysis.

REAGENTS:

Hexane Acetone

Product Description:

EUFLSA1M6 – 1000 mg small particle Grade A Florisil[®] for slower gravity flow. EUFLS1M6 – 1000 mg regular particle PR Grade Florisil[®] for more viscous samples.

PROCEDURE:

- 1. Prerinse a column with 9 mL of 90:10 hexane/acetone by gravity. (A low vacuum may be necessary to start flow)
- 2. Discard solvent.
- 3. Add a collection tube under the column.
- 4. Add a 2 mL aliquot of the sample extract (in hexane) to the column.
- 5. Collect extract by gravity.
- 6. Add 9 mL of 90:10 hexane/acetone to the column.
- 7. Continue to collect by gravity.
- 8. Gently evaporate the extract to a volume of 1 mL.
- 9. Bring to a final volume of 2 mL with hexane.

Florisil[®] is a registered trademark of U.S. Silica.

DCN-903020-127

Fractionation of Aliphatic And Aromatic Hydrocarbons Using ENVIRO-CLEAN[®] EPH SILICA

(Developed in cooperation with Lancaster Laboratories, Inc.) UCT Part Number: XRSIHT13M15 February 3, 2009

Background:

The composition of petroleum is a complex mixture of hundreds of different hydrocarbon compounds. The resultant makeup of hydrocarbons released into the environment is variable and dependent on the conditions to which it is subsequently exposed. While in the environment, petroleum composition is influenced by a number of factors including volatilization, leaching and/or biological degradation. These environmental effects yield a mixture whose toxicological properties can be vastly different than the parent product. Based on the known toxicological properties of petroleum products we can assume that:

- aromatic compounds are more toxic than aliphatic compounds
- the toxicity of aliphatic compounds is dependent upon their molecular weight with low molecular weight compounds showing relatively higher toxicity

The fractionation of the total petroleum hydrocarbon extract is necessary to determine the concentration of the aliphatic versus aromatic compounds. The Massachusetts Department of Environmental Protection (MADEP) has taken the approach of fractionating the C9-C18 aliphatics (n-nonane to n-octadecane), C19-C36 aliphatics (n-nonadecane to hexatriacontane), and the C11-C22 aromatics (naphthalene to benzo (g,h,i)perylene). These compounds are associated with the release of hydrocarbons in the environment. The aromatics are considered the most toxic form of hydrocarbon.

Procedure:

Prepare Extract

1. Solvent exchange the hydrocarbon extract from methylene chloride to hexane using a K-D apparatus.

Prepare Cartridge

- 2. Thoroughly rinse cartridge with two, 10 mL aliquots of pentane.
- 3. Add 1 mL of the extract to the cartridge.

4. Elute aliphatic fraction with pentane by gravity and collect everything in an ampoule. A total of 10 mL should be collected.

5. Place a fresh ampoule under the cartridge and elute the aromatic fraction with methylene chloride by gravity. A total of 10 mL should be collected.

6. Concentrate each fraction separately to a final volume on a steam bath using an ampoule and micro-Snyder column combination. Other techniques may be used but the loss of C9-C18 hydrocarbons may result.

It is very important to keep the silica cartridges dry and away from room air prior to use. Moisture and contaminants in the air will reduce the effectiveness of the silica and may cause contamination of the extract. Pre-rinsing the cartridges with acetone may reduce this problem.

Results:

Classification	Range	Percent Recovery	
Aromatics	C11-C22	88	
surrogates	2-fluorobiphenyl	123	
surrogates	o-terphenyl	100	
Aliphatics	C9-C18	85	
	C19-C36	89	
surrogates	1-chlorooctadecane	58	

MA EPH DATA from Lancaster Labs

UCT in cooperation with Lancaster Laboratories, Inc., has developed a fractionation product that provides consistent and accurate results free from contamination

DCN-903020-124

Removal of Sulfur from Environmental Samples Using Copper Beads

UCT Part Number: ECCU01K February 24, 2009

1. Post Sample Extraction

- a. Place 4 grams of copper beads in a glass vial
- b. Add 2 mL of liquid sample extract to the vial

2. Sulfur Removal

- a. Seal the glass vial and mix sample with copper beads for 2 minutes
- b. Allow to stand for approximately 10 minutes
- c. If sample contains high levels of sulfur, repeat process with 4 grams of fresh copper beads

Note: For the analysis of PCB type analytes, copper may reside in the extract

3. Analysis, GC/MS or LC/MS

- a. Transfer clean extract to autosampler vial
- b. Inject 1-2 µL for GC
- c. Inject 5-10 µL for LC

DCN-904220-136